File size: 8,378 Bytes
d2c6071
 
 
 
 
 
 
 
 
 
 
7e22212
d2c6071
 
 
 
 
 
7e22212
d2c6071
 
 
 
 
 
 
7e22212
d2c6071
 
 
 
7e22212
d2c6071
 
 
 
 
 
 
 
 
7e22212
 
 
d2c6071
7e22212
 
 
 
 
 
d2c6071
 
7e22212
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2c6071
 
 
 
7e22212
d2c6071
 
7e22212
d2c6071
 
7e22212
 
 
 
 
 
d2c6071
 
 
7e22212
 
 
 
 
d2c6071
7e22212
 
 
 
 
 
 
 
 
d2c6071
 
 
7e22212
 
d2c6071
 
7e22212
d2c6071
 
7e22212
d2c6071
7e22212
d2c6071
7e22212
d2c6071
 
 
 
 
 
 
7e22212
 
 
d2c6071
 
 
 
 
 
 
 
7e22212
d2c6071
7e22212
d2c6071
 
 
 
 
 
 
7e22212
d2c6071
 
 
7e22212
 
 
 
 
 
1ea4886
7e22212
d2c6071
 
6e82048
d2c6071
 
7e22212
d2c6071
 
 
 
 
 
7e22212
f20dd5f
7e22212
 
f20dd5f
7e22212
d2c6071
7e22212
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d2c6071
 
 
7e22212
d2c6071
 
7e22212
 
 
d2c6071
 
 
 
 
 
 
 
 
 
 
 
6e82048
 
 
7e22212
 
6e82048
7e22212
 
6e82048
7e22212
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import streamlit as st
import pandas as pd
import os
import json
import time
import requests
from concurrent.futures import ThreadPoolExecutor

# Streamlit app configuration
st.set_page_config(layout="wide")


# Function to make the API call and save the response
def make_api_call(query, params, url, headers, output_dir):
    data = {
        "message": query["message"],
        "stream": False,
        "return_prompt": True,
        **params,
    }
    start_time = time.time()
    response = requests.post(url, headers=headers, json=data)
    end_time = time.time()
    duration = end_time - start_time

    query_id = query["id"]
    query_dir = os.path.join(output_dir, f"query_{query_id}")
    os.makedirs(query_dir, exist_ok=True)

    file_name = f'response_{params["model"]}_{"multi_step" if params.get("tools") else "single_step"}.json'
    file_path = os.path.join(query_dir, file_name)
    with open(file_path, "w") as f:
        json.dump(response.json(), f, indent=2)

    response_data = response.json()
    extracted_data = {
        "response_id": response_data.get("response_id"),
        "text": response_data.get("text"),
        "generation_id": response_data.get("generation_id"),
        "finish_reason": response_data.get("finish_reason"),
        "meta": {
            "api_version": response_data.get("meta", {})
            .get("api_version", {})
            .get("version"),
            "billed_units": {
                "input_tokens": response_data.get("meta", {})
                .get("billed_units", {})
                .get("input_tokens"),
                "output_tokens": response_data.get("meta", {})
                .get("billed_units", {})
                .get("output_tokens"),
            },
            "tokens": {
                "input_tokens": response_data.get("meta", {})
                .get("tokens", {})
                .get("input_tokens"),
                "output_tokens": response_data.get("meta", {})
                .get("tokens", {})
                .get("output_tokens"),
            },
        },
    }

    return {
        "query_id": query_id,
        "model": params["model"],
        "tools": params.get("tools", params.get("connectors")),
        "enable_hosted_multi_step": params.get("enable_hosted_multi_step"),
        "connectors": params.get("connectors"),
        "message": query["message"],
        "response": extracted_data["text"],
        **extracted_data,
        "params": params,
        "duration": duration,
    }


# Streamlit UI
st.title("Cohere API Benchmarking Tool")

# Input for API key
api_key = st.text_input("Enter your Cohere API key:", type="password")

# Input for messages
messages_input = st.text_area("Enter messages to benchmark (one per line):")
messages = [
    {"id": idx + 1, "message": msg}
    for idx, msg in enumerate(messages_input.split("\n"))
    if msg.strip()
]

# Define the combinations of parameters
param_combinations = [
    {
        "model": "command-r",
        "tools": [{"name": "internet_search"}],
        "enable_hosted_multi_step": True,
    },
    {"model": "command-r", "connectors": [{"id": "web-search", "name": "web search"}]},
    {
        "model": "command-r-plus",
        "tools": [{"name": "internet_search"}],
        "enable_hosted_multi_step": True,
    },
    {
        "model": "command-r-plus",
        "connectors": [{"id": "web-search", "name": "web search"}],
    },
]

# Define the API endpoint and headers
url = "https://production.api.cohere.ai/v1/chat"
headers = {"Content-Type": "application/json", "Authorization": f"Bearer {api_key}"}

# Create a directory to store the JSON files
output_dir = "api_responses"
os.makedirs(output_dir, exist_ok=True)

if st.button("Run Benchmark"):
    if not api_key:
        st.error("API key is required.")
    elif not messages:
        st.error("At least one message is required.")
    else:
        # Create a ThreadPoolExecutor for parallel execution
        with ThreadPoolExecutor() as executor:
            # Submit the API calls to the executor
            futures = []
            for query in messages:
                for params in param_combinations:
                    future = executor.submit(
                        make_api_call, query, params, url, headers, output_dir
                    )
                    futures.append(future)

            # Collect the results from the futures
            results = [future.result() for future in futures]

        # Create a DataFrame from the results
        df = pd.DataFrame(results)
        # Save the DataFrame to a CSV file
        df.to_csv("api_benchmarking_results.csv", index=False)

        st.success("Benchmarking completed!")

        # Display the DataFrame
        st.dataframe(df)

        # Offer download of the JSON files
        for query in messages:
            query_id = query["id"]
            query_dir = os.path.join(output_dir, f"query_{query_id}")
            st.markdown(f"### Query ID: {query_id}")
            for file_name in os.listdir(query_dir):
                file_path = os.path.join(query_dir, file_name)
                with open(file_path, "r") as f:
                    st.download_button(
                        label=f"Download {file_name}",
                        data=f.read(),
                        file_name=file_name,
                        mime="application/json",
                        key=f"{query_id}_{file_name}",
                    )

        # Visualization part
        st.title("Cohere Multi tool use - Benchmarking Results")

        # Group by query ID
        grouped = df.groupby("query_id")

        # Display each query and its data
        for query_id, group in grouped:
            st.header(f"Query ID: {query_id}")

            # Extract billed input and output tokens from meta
            group["billed_input_tokens"] = group["meta"].apply(
                lambda x: x.get("billed_units", {}).get("input_tokens", "N/A")
            )
            group["billed_output_tokens"] = group["meta"].apply(
                lambda x: x.get("billed_units", {}).get("output_tokens", "N/A")
            )
            # Display the runs for each query in a table
            st.write(
                group[
                    [
                        "message",
                        "response",
                        "billed_input_tokens",
                        "billed_output_tokens",
                        "model",
                        "tools",
                        "enable_hosted_multi_step",
                        "connectors",
                        "duration",
                    ]
                ]
            )

            # Toggle for detailed information
            with st.expander("Show Details"):
                for index, row in group.iterrows():
                    st.subheader(f"Run {index + 1}")
                    st.write(f"**Model:** {row['model']}")
                    st.write(f"**Tools:** {row['tools']}")
                    st.write(
                        f"**Enable Hosted Multi-Step:** {row['enable_hosted_multi_step']}"
                    )
                    st.write(f"**Connectors:** {row['connectors']}")
                    st.write(f"**Message:** {row['message']}")
                    st.write(f"**Response:** {row['response']}")
                    st.write(f"**Response ID:** {row['response_id']}")
                    st.write(f"**Text:** {row['text']}")
                    st.write(f"**Generation ID:** {row['generation_id']}")
                    st.write(f"**Finish Reason:** {row['finish_reason']}")
                    st.write(f"**Meta:** {row['meta']}")
                    st.write(f"**Params:** {row['params']}")
                    st.write(f"**Duration:** {row['duration']}")

                    # Parse and display meta field
                    # Parse and display meta field
                    meta = row["meta"]
                    st.write(f"**API Version:** {meta.get('api_version', 'N/A')}")
                    billed_units = meta.get("billed_units", {})
                    st.write(
                        f"**Billed Units - Input Tokens:** {billed_units.get('input_tokens', 'N/A')}"
                    )
                    st.write(
                        f"**Billed Units - Output Tokens:** {billed_units.get('output_tokens', 'N/A')}"
                    )