File size: 9,834 Bytes
f1586f7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
import os
import configparser
import argparse
import logging
from functools import partial
from typing import Any, Dict, Optional, Union

import lightning as L
from lightning.pytorch import seed_everything
from lightning.pytorch.loggers import WandbLogger
from lightning.pytorch.callbacks import ModelCheckpoint, LearningRateMonitor, TQDMProgressBar
import torch
from torch.utils.data import DataLoader

from data.kubric_data import KubricData
from models.locotrack_model import LocoTrack
import model_utils
from data.evaluation_datasets import get_eval_dataset


class LocoTrackModel(L.LightningModule):
    def __init__(
        self,
        model_kwargs: Optional[Dict[str, Any]] = None,
        model_forward_kwargs: Optional[Dict[str, Any]] = None,
        loss_name: Optional[str] = 'tapir_loss',
        loss_kwargs: Optional[Dict[str, Any]] = None,
        query_first: Optional[bool] = False,
        optimizer_name: Optional[str] = 'Adam',
        optimizer_kwargs: Optional[Dict[str, Any]] = None,
        scheduler_name: Optional[str] = 'OneCycleLR',
        scheduler_kwargs: Optional[Dict[str, Any]] = None,
    ):
        super().__init__()
        self.model = LocoTrack(**(model_kwargs or {}))
        self.model_forward_kwargs = model_forward_kwargs or {}
        self.loss = partial(model_utils.__dict__[loss_name], **(loss_kwargs or {}))
        self.query_first = query_first

        self.optimizer_name = optimizer_name
        self.optimizer_kwargs = optimizer_kwargs or {'lr': 2e-3}
        self.scheduler_name = scheduler_name
        self.scheduler_kwargs = scheduler_kwargs or {'max_lr': 2e-3, 'pct_start': 0.05, 'total_steps': 300000}

    def training_step(self, batch, batch_idx):
        output = self.model(batch['video'], batch['query_points'], **self.model_forward_kwargs)
        loss, loss_scalars = self.loss(batch, output)
        
        self.log_dict(
            {f'train/{k}': v.item() for k, v in loss_scalars.items()},
            logger=True,
            on_step=True,
            sync_dist=True,
        )

        return loss

    def validation_step(self, batch, batch_idx, dataloader_idx=None):
        output = self.model(batch['video'], batch['query_points'], **self.model_forward_kwargs)
        loss, loss_scalars = self.loss(batch, output)
        metrics = model_utils.eval_batch(batch, output, query_first=self.query_first)
        
        if self.trainer.global_rank == 0:
            log_prefix = 'val/'
            if dataloader_idx is not None:
                log_prefix = f'val/data_{dataloader_idx}/'

            self.log_dict(
                {log_prefix + k: v for k, v in loss_scalars.items()},
                logger=True,
                rank_zero_only=True,
            )
            self.log_dict(
                {log_prefix + k: v.item() for k, v in metrics.items()},
                logger=True,
                rank_zero_only=True,
            )
            logging.info(f"Batch {batch_idx}: {metrics}")

    def test_step(self, batch, batch_idx, dataloader_idx=None):
        output = self.model(batch['video'], batch['query_points'], **self.model_forward_kwargs)
        loss, loss_scalars = self.loss(batch, output)
        metrics = model_utils.eval_batch(batch, output, query_first=self.query_first)

        if self.trainer.global_rank == 0:
            log_prefix = 'test/'
            if dataloader_idx is not None:
                log_prefix = f'test/data_{dataloader_idx}/'
            
            self.log_dict(
                {log_prefix + k: v for k, v in loss_scalars.items()},
                logger=True,
                rank_zero_only=True,
            )
            self.log_dict(
                {log_prefix + k: v.item() for k, v in metrics.items()},
                logger=True,
                rank_zero_only=True,
            )
            logging.info(f"Batch {batch_idx}: {metrics}")
        
    def configure_optimizers(self):
        weights = [p for n, p in self.named_parameters() if 'bias' not in n]
        bias = [p for n, p in self.named_parameters() if 'bias' in n]

        optimizer = torch.optim.__dict__[self.optimizer_name](
            [
                {'params': weights, **self.optimizer_kwargs},
                {'params': bias, **self.optimizer_kwargs, 'weight_decay': 0.}
            ]
        )
        scheduler = torch.optim.lr_scheduler.__dict__[self.scheduler_name](optimizer, **self.scheduler_kwargs)
        
        return [optimizer], [{"scheduler": scheduler, "interval": "step"}]


def train(
    mode: str,
    save_path: str,
    val_dataset_path: str,
    ckpt_path: str = None,
    kubric_dir: str = '',
    precision: str = '32',
    batch_size: int = 1,
    val_check_interval: Union[int, float] = 5000,
    log_every_n_steps: int = 10,
    gradient_clip_val: float = 1.0,
    max_steps: int = 300_000,
    model_kwargs: Optional[Dict[str, Any]] = None,
    model_forward_kwargs: Optional[Dict[str, Any]] = None,
    loss_name: str = 'tapir_loss',
    loss_kwargs: Optional[Dict[str, Any]] = None,
    optimizer_name: str = 'Adam',
    optimizer_kwargs: Optional[Dict[str, Any]] = None,
    scheduler_name: str = 'OneCycleLR',
    scheduler_kwargs: Optional[Dict[str, Any]] = None,
    # query_first: bool = False,
):
    """Train the LocoTrack model with specified configurations."""
    seed_everything(42, workers=True)

    model = LocoTrackModel(
        model_kwargs=model_kwargs,
        model_forward_kwargs=model_forward_kwargs,
        loss_name=loss_name,
        loss_kwargs=loss_kwargs,
        query_first='q_first' in mode,
        optimizer_name=optimizer_name,
        optimizer_kwargs=optimizer_kwargs,
        scheduler_name=scheduler_name,
        scheduler_kwargs=scheduler_kwargs,
    )
    if ckpt_path is not None and 'train' in mode:
        model.load_state_dict(torch.load(ckpt_path)['state_dict'])

    logger = WandbLogger(project='LocoTrack_Pytorch', save_dir=save_path, id=os.path.basename(save_path))
    lr_monitor = LearningRateMonitor(logging_interval='step')
    checkpoint_callback = ModelCheckpoint(
        dirpath=save_path,
        save_last=True,
        save_top_k=3,
        mode="max",
        monitor="val/average_pts_within_thresh",
        auto_insert_metric_name=True,
        save_on_train_epoch_end=False,
    )

    eval_dataset = get_eval_dataset(
        mode=mode,
        path=val_dataset_path,
    )
    eval_dataloder = {
        k: DataLoader(
            v,
            batch_size=1,
            shuffle=False,
        ) for k, v in eval_dataset.items()
    }

    if 'train' in mode:
        trainer = L.Trainer(
            strategy='ddp',
            logger=logger,
            precision=precision,
            val_check_interval=val_check_interval,
            log_every_n_steps=log_every_n_steps,
            gradient_clip_val=gradient_clip_val,
            max_steps=max_steps,
            sync_batchnorm=True,
            callbacks=[checkpoint_callback, lr_monitor],
        )
        train_dataloader = KubricData(
            global_rank=trainer.global_rank, 
            data_dir=kubric_dir, 
            batch_size=batch_size * trainer.world_size,
        )
        trainer.fit(model, train_dataloader, eval_dataloder, ckpt_path=ckpt_path)
    elif 'eval' in mode:
        trainer = L.Trainer(strategy='ddp', logger=logger, precision=precision)
        trainer.test(model, eval_dataloder, ckpt_path=ckpt_path)
    else:
        raise ValueError(f"Invalid mode: {mode}")

if __name__ == '__main__':
    parser = argparse.ArgumentParser(description="Train or evaluate the LocoTrack model.")
    parser.add_argument('--config', type=str, default='config.ini', help="Path to the configuration file.")
    parser.add_argument('--mode', type=str, required=True, help="Mode to run: 'train' or 'eval' with optional 'q_first' and the name of evaluation dataset.")
    parser.add_argument('--ckpt_path', type=str, default=None, help="Path to the checkpoint file")
    parser.add_argument('--save_path', type=str, default='snapshots', help="Path to save the logs and checkpoints.")
    
    args = parser.parse_args()
    config = configparser.ConfigParser()
    config.read(args.config)

    # Extract parameters from the config file
    train_params = {
        'mode': args.mode,
        'ckpt_path': args.ckpt_path,
        'save_path': args.save_path,
        'val_dataset_path': eval(config.get('TRAINING', 'val_dataset_path', fallback='{}')),
        'kubric_dir': config.get('TRAINING', 'kubric_dir', fallback=''),
        'precision': config.get('TRAINING', 'precision', fallback='32'),
        'batch_size': config.getint('TRAINING', 'batch_size', fallback=1),
        'val_check_interval': config.getfloat('TRAINING', 'val_check_interval', fallback=5000),
        'log_every_n_steps': config.getint('TRAINING', 'log_every_n_steps', fallback=10),
        'gradient_clip_val': config.getfloat('TRAINING', 'gradient_clip_val', fallback=1.0),
        'max_steps': config.getint('TRAINING', 'max_steps', fallback=300000),
        'model_kwargs': eval(config.get('MODEL', 'model_kwargs', fallback='{}')),
        'model_forward_kwargs': eval(config.get('MODEL', 'model_forward_kwargs', fallback='{}')),
        'loss_name': config.get('LOSS', 'loss_name', fallback='tapir_loss'),
        'loss_kwargs': eval(config.get('LOSS', 'loss_kwargs', fallback='{}')),
        'optimizer_name': config.get('OPTIMIZER', 'optimizer_name', fallback='Adam'),
        'optimizer_kwargs': eval(config.get('OPTIMIZER', 'optimizer_kwargs', fallback='{"lr": 2e-3}')),
        'scheduler_name': config.get('SCHEDULER', 'scheduler_name', fallback='OneCycleLR'),
        'scheduler_kwargs': eval(config.get('SCHEDULER', 'scheduler_kwargs', fallback='{"max_lr": 2e-3, "pct_start": 0.05, "total_steps": 300000}')),
    }

    train(**train_params)