Spaces:
Sleeping
Sleeping
Added code for inference using our model
Browse files- .gitignore +1 -0
- app.py +31 -17
.gitignore
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
/venv
|
app.py
CHANGED
|
@@ -1,21 +1,15 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
from huggingface_hub import InferenceClient
|
|
|
|
| 3 |
|
| 4 |
"""
|
| 5 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
| 6 |
"""
|
| 7 |
#client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
| 8 |
-
client = InferenceClient("halme/id2223_lora_model")
|
| 9 |
|
| 10 |
|
| 11 |
-
def respond(
|
| 12 |
-
message,
|
| 13 |
-
history: list[tuple[str, str]],
|
| 14 |
-
system_message,
|
| 15 |
-
max_tokens,
|
| 16 |
-
temperature,
|
| 17 |
-
top_p,
|
| 18 |
-
):
|
| 19 |
messages = [{"role": "system", "content": system_message}]
|
| 20 |
|
| 21 |
for val in history:
|
|
@@ -28,17 +22,37 @@ def respond(
|
|
| 28 |
|
| 29 |
response = ""
|
| 30 |
|
| 31 |
-
for message in client.chat_completion(
|
| 32 |
-
messages,
|
| 33 |
-
max_tokens=max_tokens,
|
| 34 |
-
stream=True,
|
| 35 |
-
temperature=temperature,
|
| 36 |
-
top_p=top_p,
|
| 37 |
-
):
|
| 38 |
token = message.choices[0].delta.content
|
| 39 |
|
| 40 |
response += token
|
| 41 |
-
yield response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
|
| 43 |
|
| 44 |
"""
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
from huggingface_hub import InferenceClient
|
| 3 |
+
from unsloth import FastLanguageModel
|
| 4 |
|
| 5 |
"""
|
| 6 |
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
| 7 |
"""
|
| 8 |
#client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
| 9 |
+
#client = InferenceClient("halme/id2223_lora_model")
|
| 10 |
|
| 11 |
|
| 12 |
+
def respond(message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p,):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
messages = [{"role": "system", "content": system_message}]
|
| 14 |
|
| 15 |
for val in history:
|
|
|
|
| 22 |
|
| 23 |
response = ""
|
| 24 |
|
| 25 |
+
""" for message in client.chat_completion(messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
token = message.choices[0].delta.content
|
| 27 |
|
| 28 |
response += token
|
| 29 |
+
yield response """
|
| 30 |
+
|
| 31 |
+
model, tokenizer = FastLanguageModel.from_pretrained(
|
| 32 |
+
model_name = "halme/id2223_lora_model", # YOUR MODEL YOU USED FOR TRAINING
|
| 33 |
+
max_seq_length = max_tokens,
|
| 34 |
+
dtype = None,
|
| 35 |
+
load_in_4bit = True,
|
| 36 |
+
)
|
| 37 |
+
|
| 38 |
+
FastLanguageModel.for_inference(model) # Enable native 2x faster inference
|
| 39 |
+
|
| 40 |
+
"""messages = [
|
| 41 |
+
{"role": "user", "content": "Continue the fibonnaci sequence: 1, 1, 2, 3, 5, 8,"},
|
| 42 |
+
] """
|
| 43 |
+
|
| 44 |
+
inputs = tokenizer.apply_chat_template(
|
| 45 |
+
messages,
|
| 46 |
+
tokenize = True,
|
| 47 |
+
add_generation_prompt = True, # Must add for generation
|
| 48 |
+
return_tensors = "pt",
|
| 49 |
+
).to("cuda")
|
| 50 |
+
|
| 51 |
+
from transformers import TextStreamer
|
| 52 |
+
text_streamer = TextStreamer(tokenizer, skip_prompt = True)
|
| 53 |
+
|
| 54 |
+
yield model.generate(input_ids = inputs, streamer = text_streamer, max_new_tokens = 128,
|
| 55 |
+
use_cache = True, temperature = 1.5, min_p = 0.1)
|
| 56 |
|
| 57 |
|
| 58 |
"""
|