|
|
|
|
|
|
|
|
|
|
|
import gradio as gr |
|
import requests |
|
import json |
|
import os |
|
import random |
|
import time |
|
import pytesseract |
|
import pdfplumber |
|
import docx |
|
import pandas as pd |
|
import pptx |
|
import fitz |
|
import io |
|
import uuid |
|
import concurrent.futures |
|
import itertools |
|
import threading |
|
import httpx |
|
import asyncio |
|
|
|
from openai import OpenAI |
|
|
|
from optillm.cot_reflection import cot_reflection |
|
from optillm.leap import leap |
|
from optillm.plansearch import plansearch |
|
from optillm.reread import re2_approach |
|
from optillm.rto import round_trip_optimization |
|
from optillm.self_consistency import advanced_self_consistency_approach |
|
from optillm.z3_solver import Z3SymPySolverSystem |
|
|
|
from pathlib import Path |
|
from PIL import Image |
|
from pptx import Presentation |
|
|
|
os.system("apt-get update -q -y && apt-get install -q -y tesseract-ocr tesseract-ocr-eng tesseract-ocr-ind libleptonica-dev libtesseract-dev") |
|
|
|
INTERNAL_AI_GET_SERVER = os.getenv("INTERNAL_AI_GET_SERVER") |
|
INTERNAL_TRAINING_DATA = os.getenv("INTERNAL_TRAINING_DATA") |
|
|
|
LINUX_SERVER_HOSTS = [host for host in json.loads(os.getenv("LINUX_SERVER_HOST", "[]")) if host] |
|
LINUX_SERVER_HOSTS_MARKED = set() |
|
LINUX_SERVER_HOSTS_ATTEMPTS = {} |
|
|
|
LINUX_SERVER_PROVIDER_KEYS = [key for key in json.loads(os.getenv("LINUX_SERVER_PROVIDER_KEY", "[]")) if key] |
|
LINUX_SERVER_PROVIDER_KEYS_MARKED = set() |
|
LINUX_SERVER_PROVIDER_KEYS_ATTEMPTS = {} |
|
|
|
AI_TYPES = {f"AI_TYPE_{i}": os.getenv(f"AI_TYPE_{i}") for i in range(1, 7)} |
|
RESPONSES = {f"RESPONSE_{i}": os.getenv(f"RESPONSE_{i}") for i in range(1, 10)} |
|
|
|
MODEL_MAPPING = json.loads(os.getenv("MODEL_MAPPING", "{}")) |
|
MODEL_CONFIG = json.loads(os.getenv("MODEL_CONFIG", "{}")) |
|
MODEL_CHOICES = list(MODEL_MAPPING.values()) if MODEL_MAPPING else [] |
|
DEFAULT_CONFIG = json.loads(os.getenv("DEFAULT_CONFIG", "{}")) |
|
|
|
META_TAGS = os.getenv("META_TAGS") |
|
|
|
ALLOWED_EXTENSIONS = json.loads(os.getenv("ALLOWED_EXTENSIONS")) |
|
|
|
ACTIVE_CANDIDATE = None |
|
|
|
def get_available_items(items, marked): |
|
available = [item for item in items if item not in marked] |
|
random.shuffle(available) |
|
return available |
|
|
|
def marked_item(item, marked, attempts): |
|
marked.add(item) |
|
attempts[item] = attempts.get(item, 0) + 1 |
|
if attempts[item] >= 3: |
|
def remove_fail(): |
|
marked.discard(item) |
|
if item in attempts: |
|
del attempts[item] |
|
threading.Timer(300, remove_fail).start() |
|
|
|
class SessionWithID(requests.Session): |
|
def __init__(self): |
|
super().__init__() |
|
self.session_id = str(uuid.uuid4()) |
|
|
|
def create_session(): |
|
return SessionWithID() |
|
|
|
def get_model_key(display_name): |
|
return next((k for k, v in MODEL_MAPPING.items() if v == display_name), list(MODEL_MAPPING.keys())[0] if MODEL_MAPPING else MODEL_CHOICES[0]) |
|
|
|
def extract_file_content(file_path): |
|
ext = Path(file_path).suffix.lower() |
|
content = "" |
|
try: |
|
if ext == ".pdf": |
|
with pdfplumber.open(file_path) as pdf: |
|
for page in pdf.pages: |
|
text = page.extract_text() |
|
if text: |
|
content += text + "\n" |
|
tables = page.extract_tables() |
|
if tables: |
|
for table in tables: |
|
table_str = "\n".join([", ".join(row) for row in table if row]) |
|
content += "\n" + table_str + "\n" |
|
elif ext in [".doc", ".docx"]: |
|
doc = docx.Document(file_path) |
|
for para in doc.paragraphs: |
|
content += para.text + "\n" |
|
elif ext in [".xlsx", ".xls"]: |
|
df = pd.read_excel(file_path) |
|
content += df.to_csv(index=False) |
|
elif ext in [".ppt", ".pptx"]: |
|
prs = Presentation(file_path) |
|
for slide in prs.slides: |
|
for shape in slide.shapes: |
|
if hasattr(shape, "text") and shape.text: |
|
content += shape.text + "\n" |
|
elif ext in [".png", ".jpg", ".jpeg", ".tiff", ".bmp", ".gif", ".webp"]: |
|
try: |
|
pytesseract.pytesseract.tesseract_cmd = "/usr/bin/tesseract" |
|
image = Image.open(file_path) |
|
text = pytesseract.image_to_string(image) |
|
content += text + "\n" |
|
except Exception as e: |
|
content += f"{e}\n" |
|
else: |
|
content = Path(file_path).read_text(encoding="utf-8") |
|
except Exception as e: |
|
content = f"{file_path}: {e}" |
|
return content.strip() |
|
|
|
def process_ai_response(ai_text): |
|
try: |
|
result = round_trip_optimization(ai_text) |
|
result = re2_approach(result) |
|
result = cot_reflection(result) |
|
result = advanced_self_consistency_approach(result) |
|
result = plansearch(result) |
|
result = leap(result) |
|
solver = Z3SymPySolverSystem() |
|
result = solver.solve(result) |
|
return result |
|
except Exception: |
|
return ai_text |
|
|
|
async def fetch_response_async(host, provider_key, selected_model, messages, model_config, session_id): |
|
try: |
|
async with httpx.AsyncClient(timeout=5) as client: |
|
data = {"model": selected_model, "messages": messages, **model_config} |
|
extra = {"optillm_approach": "rto|re2|cot_reflection|self_consistency|plansearch|leap|z3|bon|moa|mcts|mcp|router|privacy|executecode|json", "session_id": session_id} |
|
response = await client.post(f"{host}", json={**data, "extra_body": extra, "session_id": session_id}, headers={"Authorization": f"Bearer {provider_key}"}) |
|
response.raise_for_status() |
|
resp_json = response.json() |
|
ai_text = resp_json["choices"][0]["message"]["content"] if resp_json.get("choices") and resp_json["choices"][0].get("message") and resp_json["choices"][0]["message"].get("content") else RESPONSES["RESPONSE_2"] |
|
return process_ai_response(ai_text) |
|
except Exception: |
|
marked_item(provider_key, LINUX_SERVER_PROVIDER_KEYS_MARKED, LINUX_SERVER_PROVIDER_KEYS_ATTEMPTS) |
|
raise |
|
|
|
async def chat_with_model_async(history, user_input, selected_model_display, sess): |
|
if not get_available_items(LINUX_SERVER_PROVIDER_KEYS, LINUX_SERVER_PROVIDER_KEYS_MARKED) or not get_available_items(LINUX_SERVER_HOSTS, LINUX_SERVER_HOSTS_MARKED): |
|
return RESPONSES["RESPONSE_3"] |
|
if not hasattr(sess, "session_id"): |
|
sess.session_id = str(uuid.uuid4()) |
|
selected_model = get_model_key(selected_model_display) |
|
model_config = MODEL_CONFIG.get(selected_model, DEFAULT_CONFIG) |
|
messages = [{"role": "user", "content": user} for user, _ in history] |
|
messages += [{"role": "assistant", "content": assistant} for _, assistant in history if assistant] |
|
if INTERNAL_TRAINING_DATA: |
|
messages.insert(0, {"role": "system", "content": INTERNAL_TRAINING_DATA}) |
|
messages.append({"role": "user", "content": user_input}) |
|
global ACTIVE_CANDIDATE |
|
if ACTIVE_CANDIDATE is not None: |
|
try: |
|
return await fetch_response_async(ACTIVE_CANDIDATE[0], ACTIVE_CANDIDATE[1], selected_model, messages, model_config, sess.session_id) |
|
except Exception: |
|
ACTIVE_CANDIDATE = None |
|
available_keys = get_available_items(LINUX_SERVER_PROVIDER_KEYS, LINUX_SERVER_PROVIDER_KEYS_MARKED) |
|
available_servers = get_available_items(LINUX_SERVER_HOSTS, LINUX_SERVER_HOSTS_MARKED) |
|
candidates = [(host, key) for host in available_servers for key in available_keys] |
|
random.shuffle(candidates) |
|
tasks = [fetch_response_async(host, key, selected_model, messages, model_config, sess.session_id) for host, key in candidates] |
|
for task in asyncio.as_completed(tasks): |
|
try: |
|
result = await task |
|
ACTIVE_CANDIDATE = next(((host, key) for host, key in candidates if host and key), None) |
|
return result |
|
except Exception: |
|
continue |
|
return RESPONSES["RESPONSE_2"] |
|
|
|
async def respond_async(multi_input, history, selected_model_display, sess): |
|
message = {"text": multi_input.get("text", "").strip(), "files": multi_input.get("files", [])} |
|
if not message["text"] and not message["files"]: |
|
yield history, gr.MultimodalTextbox(value=None, interactive=True), sess |
|
return |
|
combined_input = "" |
|
for file_item in message["files"]: |
|
file_path = file_item["name"] if isinstance(file_item, dict) and "name" in file_item else file_item |
|
file_content = extract_file_content(file_path) |
|
combined_input += f"{Path(file_path).name}\n\n{file_content}\n\n" |
|
if message["text"]: |
|
combined_input += message["text"] |
|
history.append([combined_input, ""]) |
|
if len(history) > 3: |
|
history[:] = history[-3:] |
|
ai_response = await chat_with_model_async(history, combined_input, selected_model_display, sess) |
|
history[-1][1] = "" |
|
def convert_to_string(data): |
|
if isinstance(data, (str, int, float)): |
|
return str(data) |
|
elif isinstance(data, bytes): |
|
return data.decode("utf-8", errors="ignore") |
|
elif isinstance(data, (list, tuple)): |
|
return "".join(map(convert_to_string, data)) |
|
elif isinstance(data, dict): |
|
return json.dumps(data, ensure_ascii=False) |
|
else: |
|
return repr(data) |
|
for character in ai_response: |
|
history[-1][1] += convert_to_string(character) |
|
await asyncio.sleep(0.0001) |
|
yield history, gr.MultimodalTextbox(value=None, interactive=True), sess |
|
|
|
def change_model(new_model_display): |
|
return [], create_session(), new_model_display |
|
|
|
with gr.Blocks(fill_height=True, fill_width=True, title=AI_TYPES["AI_TYPE_4"], head=META_TAGS) as jarvis: |
|
user_history = gr.State([]) |
|
user_session = gr.State(create_session()) |
|
selected_model = gr.State(MODEL_CHOICES[0]) |
|
chatbot = gr.Chatbot(label=AI_TYPES["AI_TYPE_1"], show_copy_button=True, scale=1, elem_id=AI_TYPES["AI_TYPE_2"]) |
|
|
|
with gr.Row(): |
|
msg = gr.MultimodalTextbox(show_label=False, placeholder=RESPONSES["RESPONSE_5"], interactive=True, file_count="single", file_types=ALLOWED_EXTENSIONS) |
|
|
|
msg.submit(fn=respond_async, inputs=[msg, user_history, selected_model, user_session], outputs=[chatbot, msg, user_session], concurrency_limit=None, api_name=INTERNAL_AI_GET_SERVER) |
|
jarvis.launch(max_file_size="1mb") |
|
|