Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,10 +1,45 @@
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
|
3 |
with gr.Blocks(fill_height=True) as demo:
|
4 |
with gr.Sidebar():
|
5 |
gr.Markdown("# Inference Provider")
|
6 |
gr.Markdown("This Space showcases the google/gemma-2-2b-it model, served by the nebius API. Sign in with your Hugging Face account to use this API.")
|
7 |
button = gr.LoginButton("Sign in")
|
8 |
-
gr.load("models/google/gemma-2-2b-it", accept_token=button, provider="nebius")
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import torchaudio
|
4 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
|
5 |
+
|
6 |
+
# Load a smaller Wav2Vec model and processor for Persian
|
7 |
+
model_name = "facebook/wav2vec2-base" # Smaller model
|
8 |
+
processor = Wav2Vec2Processor.from_pretrained(model_name)
|
9 |
+
model = Wav2Vec2ForCTC.from_pretrained(model_name)
|
10 |
+
|
11 |
+
def transcribe_audio(audio):
|
12 |
+
# Load the audio file and resample to 16kHz
|
13 |
+
waveform, sample_rate = torchaudio.load(audio)
|
14 |
+
resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=16000)
|
15 |
+
waveform = resampler(waveform)
|
16 |
+
|
17 |
+
# Preprocess the audio
|
18 |
+
input_values = processor(waveform.squeeze().numpy(), return_tensors="pt", sampling_rate=16000).input_values
|
19 |
+
|
20 |
+
# Perform inference
|
21 |
+
with torch.no_grad():
|
22 |
+
logits = model(input_values).logits
|
23 |
+
|
24 |
+
# Decode the logits to text
|
25 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
26 |
+
transcription = processor.decode(predicted_ids[0])
|
27 |
+
|
28 |
+
return transcription
|
29 |
|
30 |
with gr.Blocks(fill_height=True) as demo:
|
31 |
with gr.Sidebar():
|
32 |
gr.Markdown("# Inference Provider")
|
33 |
gr.Markdown("This Space showcases the google/gemma-2-2b-it model, served by the nebius API. Sign in with your Hugging Face account to use this API.")
|
34 |
button = gr.LoginButton("Sign in")
|
|
|
35 |
|
36 |
+
with gr.Tab("Text Inference"):
|
37 |
+
gr.load("models/google/gemma-2-2b-it", accept_token=button, provider="nebius")
|
38 |
+
|
39 |
+
with gr.Tab("Persian ASR"):
|
40 |
+
audio_input = gr.Audio(label="Upload Audio", type="filepath")
|
41 |
+
text_output = gr.Textbox(label="Transcription")
|
42 |
+
transcribe_button = gr.Button("Transcribe")
|
43 |
+
transcribe_button.click(transcribe_audio, inputs=audio_input, outputs=text_output)
|
44 |
+
|
45 |
demo.launch()
|