Commit
·
222587e
1
Parent(s):
95ee2a7
Serve immediate health endpoint; download in background
Browse files- Dockerfile +2 -11
- app.py +27 -24
Dockerfile
CHANGED
@@ -1,20 +1,11 @@
|
|
1 |
-
# ---- 1. Base image that already has musl ----
|
2 |
FROM python:3.11-alpine
|
3 |
|
4 |
-
|
5 |
-
RUN apk add --no-cache \
|
6 |
-
build-base \
|
7 |
-
libffi-dev \
|
8 |
-
cmake \
|
9 |
-
git
|
10 |
-
|
11 |
-
# ---- 3. Python deps ----
|
12 |
WORKDIR /app
|
|
|
13 |
COPY requirements.txt .
|
14 |
RUN pip install --no-cache-dir -r requirements.txt
|
15 |
|
16 |
-
# ---- 4. Copy rest of the code ----
|
17 |
COPY . .
|
18 |
-
|
19 |
EXPOSE 7860
|
20 |
CMD ["python", "-u", "app.py"]
|
|
|
|
|
1 |
FROM python:3.11-alpine
|
2 |
|
3 |
+
RUN apk add --no-cache build-base libffi-dev cmake git curl
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
WORKDIR /app
|
5 |
+
|
6 |
COPY requirements.txt .
|
7 |
RUN pip install --no-cache-dir -r requirements.txt
|
8 |
|
|
|
9 |
COPY . .
|
|
|
10 |
EXPOSE 7860
|
11 |
CMD ["python", "-u", "app.py"]
|
app.py
CHANGED
@@ -1,31 +1,34 @@
|
|
1 |
-
import os, logging, requests,
|
2 |
-
from contextlib import asynccontextmanager
|
3 |
from fastapi import FastAPI, HTTPException
|
4 |
from pydantic import BaseModel
|
5 |
from llama_cpp import Llama
|
6 |
|
7 |
-
# Direct public download link
|
8 |
MODEL_URL = (
|
9 |
"https://huggingface.co/fdtn-ai/Foundation-Sec-8B-Q4_K_M-GGUF/"
|
10 |
"resolve/main/foundation-sec-8b-q4_k_m.gguf"
|
11 |
)
|
12 |
MODEL_PATH = "foundation-sec-8b-q4_k_m.gguf"
|
13 |
|
14 |
-
|
15 |
-
async def lifespan(app: FastAPI):
|
16 |
-
logging.basicConfig(level=logging.INFO)
|
17 |
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
if not os.path.exists(MODEL_PATH):
|
20 |
-
logging.info("Downloading model …
|
21 |
with requests.get(MODEL_URL, stream=True, timeout=30) as r:
|
22 |
r.raise_for_status()
|
23 |
with open(MODEL_PATH, "wb") as f:
|
24 |
for chunk in r.iter_content(chunk_size=8192):
|
25 |
f.write(chunk)
|
26 |
logging.info("Download finished.")
|
27 |
-
|
28 |
-
logging.info("Loading model …")
|
29 |
app.state.llm = Llama(
|
30 |
model_path=MODEL_PATH,
|
31 |
n_ctx=4096,
|
@@ -33,27 +36,27 @@ async def lifespan(app: FastAPI):
|
|
33 |
verbose=False
|
34 |
)
|
35 |
logging.info("Model ready.")
|
36 |
-
yield
|
37 |
-
logging.info("Shutting down.")
|
38 |
|
39 |
-
|
40 |
|
41 |
class ChatRequest(BaseModel):
|
42 |
messages: list[dict]
|
43 |
max_tokens: int = 256
|
44 |
temperature: float = 0.7
|
45 |
|
46 |
-
@app.get("/")
|
47 |
-
def root():
|
48 |
-
return {"message": "Foundation-Sec-8B API running on HF Space"}
|
49 |
-
|
50 |
@app.post("/v1/chat/completions")
|
51 |
def chat(req: ChatRequest):
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
temperature=req.temperature
|
57 |
)
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os, logging, requests, threading, uvicorn
|
|
|
2 |
from fastapi import FastAPI, HTTPException
|
3 |
from pydantic import BaseModel
|
4 |
from llama_cpp import Llama
|
5 |
|
|
|
6 |
MODEL_URL = (
|
7 |
"https://huggingface.co/fdtn-ai/Foundation-Sec-8B-Q4_K_M-GGUF/"
|
8 |
"resolve/main/foundation-sec-8b-q4_k_m.gguf"
|
9 |
)
|
10 |
MODEL_PATH = "foundation-sec-8b-q4_k_m.gguf"
|
11 |
|
12 |
+
logging.basicConfig(level=logging.INFO)
|
|
|
|
|
13 |
|
14 |
+
# --- tiny “alive” route so HF sees the container immediately ---
|
15 |
+
app = FastAPI()
|
16 |
+
|
17 |
+
@app.get("/")
|
18 |
+
def root():
|
19 |
+
return {"status": "loading model …"}
|
20 |
+
|
21 |
+
# --- download once, in a background thread so / stays alive ---
|
22 |
+
def download_model():
|
23 |
if not os.path.exists(MODEL_PATH):
|
24 |
+
logging.info("Downloading model …")
|
25 |
with requests.get(MODEL_URL, stream=True, timeout=30) as r:
|
26 |
r.raise_for_status()
|
27 |
with open(MODEL_PATH, "wb") as f:
|
28 |
for chunk in r.iter_content(chunk_size=8192):
|
29 |
f.write(chunk)
|
30 |
logging.info("Download finished.")
|
31 |
+
logging.info("Loading model into RAM …")
|
|
|
32 |
app.state.llm = Llama(
|
33 |
model_path=MODEL_PATH,
|
34 |
n_ctx=4096,
|
|
|
36 |
verbose=False
|
37 |
)
|
38 |
logging.info("Model ready.")
|
|
|
|
|
39 |
|
40 |
+
threading.Thread(target=download_model, daemon=True).start()
|
41 |
|
42 |
class ChatRequest(BaseModel):
|
43 |
messages: list[dict]
|
44 |
max_tokens: int = 256
|
45 |
temperature: float = 0.7
|
46 |
|
|
|
|
|
|
|
|
|
47 |
@app.post("/v1/chat/completions")
|
48 |
def chat(req: ChatRequest):
|
49 |
+
if not hasattr(app.state, "llm"):
|
50 |
+
raise HTTPException(
|
51 |
+
status_code=503,
|
52 |
+
detail="Model still loading, please retry in ~30 s"
|
|
|
53 |
)
|
54 |
+
return app.state.llm.create_chat_completion(
|
55 |
+
messages=req.messages,
|
56 |
+
max_tokens=req.max_tokens,
|
57 |
+
temperature=req.temperature
|
58 |
+
)
|
59 |
+
|
60 |
+
# --- start uvicorn on port 7860 (HF expects this) ---
|
61 |
+
if __name__ == "__main__":
|
62 |
+
uvicorn.run(app, host="0.0.0.0", port=7860)
|