yannayguy1 / app.py
guyinbal's picture
Upload app.py
62f5f82 verified
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
import gradio as gr
import pandas as pd
from sentence_transformers import SentenceTransformer
# 讟注谉 讗转 讛诪讜讚诇
model = SentenceTransformer("all-MiniLM-L6-v2")
# 讟注谉 讗转 讛讚讗讟讛住讟 诪讛诇讬谞拽
url = "https://huggingface.co/datasets/Pablinho/movies-dataset/resolve/main/9000plus.csv"
print("Loading dataset...")
dataset = pd.read_csv(url)
# 讜讚讗 砖讛注诪讜讚讜转 拽讬讬诪讜转
assert "Title" in dataset.columns
assert "Overview" in dataset.columns
# 谞拽讛 砖讜专讜转 注诐 Overview 讞住专 讗讜 诇讗 诪讞专讜讝转
dataset = dataset.dropna(subset=["Overview"])
dataset = dataset[dataset["Overview"].apply(lambda x: isinstance(x, str))]
# 讛讙讘诇 诇志500 住专讟讬诐
MAX_MOVIES = 500
dataset = dataset.head(MAX_MOVIES)
print(f"Encoding {len(dataset)} movie descriptions...")
dataset["embeddings"] = dataset["Overview"].apply(lambda x: model.encode(x).tolist())
print("Done encoding!")
def recommend_similar_movies(input_text, top_n=5):
input_embedding = model.encode([input_text])
similarities = cosine_similarity(input_embedding, np.vstack(dataset['embeddings'].to_numpy()))[0]
top_indices = similarities.argsort()[::-1][:top_n]
results = dataset.iloc[top_indices][['Title', 'Overview']]
return "\n\n".join(f"馃幀 **{row['Title']}**\n{row['Overview']}" for _, row in results.iterrows())
demo = gr.Interface(
fn=recommend_similar_movies,
inputs=gr.Textbox(lines=2, placeholder="Describe a movie..."),
outputs="text",
title="Movie Recommender",
description="Get movie recommendations based on your description. Powered by sentence-transformers and cosine similarity."
)
if __name__ == "__main__":
demo.launch()