import numpy as np import pandas as pd from ultralytics import YOLO import streamlit as st import cv2 import base64 import time import shutil import os from PIL import Image import base64 st.set_page_config(layout="wide",initial_sidebar_state="expanded", page_icon='🔎',page_title='Poth-Hole Detector') def get_video_base64(video_path): with open(video_path, "rb") as file: video_bytes = file.read() base64_encoded = base64.b64encode(video_bytes).decode("utf-8") return base64_encoded video_path = "deep1.mp4" video_base64 = get_video_base64(video_path) video_html = f""" """ st.markdown(video_html, unsafe_allow_html=True) # Define custom style for the glowing text glowing_text_style = ''' ''' # Display the glowing text using st.markdown st.markdown(glowing_text_style, unsafe_allow_html=True) st.markdown(f'

🕳️ PothHole Detector 🕳️

', unsafe_allow_html=True) def upload(): image=None image_filename=None initial_image = st.camera_input('Take a picture') original_image = initial_image temp_path = None if initial_image is not None: image_filename = f"{int(time.time())}.jpg" bytes_data = initial_image.getvalue() image = cv2.imdecode(np.frombuffer(bytes_data, np.uint8), cv2.IMREAD_COLOR) return image, original_image,image_filename def process_line(line, image_np,counter): # Process a single line from the labels.txt file bresults = line.split() if len(bresults) >=5: names={0:'POTH_HOLE'} xc, yc, nw, nh = map(float, bresults[1:5]) h, w = image_np.shape[0], image_np.shape[1] xc *= w yc *= h nw *= w nh *= h top_left = (int(xc - nw / 2), int(yc - nh / 2)) bottom_right = (int(xc + nw / 2), int(yc + nh / 2)) # Draw bounding box cv2.rectangle(image_np, top_left, bottom_right, (4, 29, 255), 3, cv2.LINE_4) # Draw label text #label = names[int(bresults[0])] label = f'{names[int(bresults[0])]}-{counter}' text_size = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 2, 3)[0] text_width, text_height = text_size text_x = (top_left[0] + bottom_right[0] - text_width) // 2 + 100 text_y = top_left[1] - 10 cv2.putText(image_np, label, (text_x, text_y), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 0), 2) sidebar_option = st.sidebar.radio("Select an option", ("Take picture for prediction", "Upload file")) def main(): if sidebar_option == "Take picture for prediction": if st.checkbox('Take a picture for prediction'): image, original_image,image_filename= upload() if original_image is not None and original_image is not None and len(image_filename)!=0 and st.button('Prediction'): # Check if original_image is not None st.info('Wait for the results...!') #image1=cv2.imread(image) counter=1 names={0:'POTH_HOLE' } model=YOLO('best.pt') result = model.predict(image,save=True,save_txt=True) txt_files_exist = any(filename.endswith('.txt') for filename in os.listdir('runs/detect/predict/labels')) if txt_files_exist: lis=open('runs/detect/predict/labels/image0.txt','r').readlines() for line in lis: process_line(line, image_np,counter) counter+=1 with st.spinner('Wait for the results...!'): time.sleep(5) st.image(image,use_column_width=True) st.balloons() try: if os.path.exists('runs'): shutil.rmtree('runs') st.session_state.original_image = None # Clear the original_image variable except Exception as e: st.error(f"An error occurred: {e}") else: st.warning('⚠️Please check your image') try: if os.path.exists('runs'): shutil.rmtree('runs') st.session_state.original_image = None # Clear the original_image variable except Exception as e: st.error(f"An error occurred: {e}") elif sidebar_option == "Upload file": fileimage=st.file_uploader('Upload the file for detection 📁',type=['jpg']) st.info("If you haven't filed, our system will employ a default image for prediction 📁. Simply press the 'Predict' button and directly upload your file for analysis 🧐.") if st.button('Predict'): if fileimage is None: st.warning('🛎️We are using default image 📷') counter=1 default_image_path='df.jpg' pic = Image.open(default_image_path) image_np = np.array(pic) names={0:'POTH_HOLE' } mod1=YOLO('best.pt') mod1.predict(image_np,save=True,save_txt=True) txt_files_exist = any(filename.endswith('.txt') for filename in os.listdir('runs/detect/predict/labels')) if txt_files_exist: lis=open('runs/detect/predict/labels/image0.txt','r').readlines() with st.spinner('Wait for the results...!'): time.sleep(5) for line in lis: process_line(line, image_np,counter) counter+=1 col1,col2=st.columns(2) with col1: st.info('Original Image!') st.image(default_image_path,use_column_width=True) with col2: st.info('Detected Image!') st.image(image_np,use_column_width=True) st.balloons() try: if os.path.exists('runs'): shutil.rmtree('runs') st.session_state.original_image = None # Clear the original_image variable except Exception as e: st.error(f"An error occurred: {e}") else: if fileimage is not None and not fileimage.name.endswith('.jpg'): st.warning('⚠️ Please upload only JPG images.') else: st.info('Wait for the results...!') counter=1 pic=Image.open(fileimage) image_np = np.array(pic) names={0:'POTH_HOLE' } mod1=YOLO('best.pt') mod1.predict(image_np,save=True,save_txt=True) txt_files_exist = any(filename.endswith('.txt') for filename in os.listdir('runs/detect/predict/labels')) if txt_files_exist: lis=open('runs/detect/predict/labels/image0.txt','r').readlines() with st.spinner('Wait for the results...!'): time.sleep(5) for line in lis: process_line(line, image_np,counter) counter+=1 col1,col2=st.columns(2) with col1: st.info('Original Image!') st.image(fileimage,use_column_width=True) with col2: st.info('Detected Image!') st.image(image_np,use_column_width=True) st.balloons() try: if os.path.exists('runs'): shutil.rmtree('runs') st.session_state.original_image = None # Clear the original_image variable except Exception as e: st.error(f"An error occurred: {e}") else: st.warning('⚠️Please check your image') try: if os.path.exists('runs'): shutil.rmtree('runs') st.session_state.original_image = None # Clear the original_image variable except Exception as e: st.error(f"An error occurred: {e}") if __name__ == '__main__': main()