import gradio as gr import torch from transformers import AutoModelForSequenceClassification, AutoTokenizer model = AutoModelForSequenceClassification.from_pretrained("gsar78/Greek_Sentiment") tokenizer = AutoTokenizer.from_pretrained("gsar78/Greek_Sentiment") def predict(text): inputs = tokenizer(text, return_tensors="pt") outputs = model(**inputs) scores = torch.nn.functional.softmax(outputs.logits, dim=1) return {"Positive": scores[:, 1].item(), "Negative": scores[:, 0].item()} iface = gr.Interface( fn=predict, inputs="text", outputs="label", title="Hellenic Sentiment AI", description=None, article=None, theme="default", flagging_dir=None, share=True, favicon_path=None, css=None, analytics_script=None, allow_flagging="never", allow_screenshot=True, enable_queue=True, show_input=True, show_output=True, footer="Development by Geo Sar" ) iface.launch()