Spaces:
Sleeping
Sleeping
import gradio as gr | |
def predict(text): | |
# Tokenize the input text | |
inputs = tokenizer(text, return_tensors="pt") | |
# Get the model outputs | |
outputs = model(**inputs) | |
# Apply softmax to the logits to get probabilities | |
scores = torch.nn.functional.softmax(outputs.logits, dim=1) | |
# Get the predicted label | |
predicted_label_idx = scores.argmax(dim=1).item() | |
labels = ["negative", "neutral", "positive"] | |
predicted_label = labels[predicted_label_idx] | |
confidence_score = scores[0, predicted_label_idx].item() | |
# Create a dictionary with the prediction and scores | |
result = { | |
"text": text, | |
"label": predicted_label, | |
"score": confidence_score, | |
"scores": { | |
"positive": scores[0, 2].item(), | |
"neutral": scores[0, 1].item(), | |
"negative": scores[0, 0].item() | |
} | |
} | |
return result | |
iface = gr.Interface( | |
fn=predict, | |
inputs="text", | |
outputs=[ | |
gr.Textbox(label="Prediction"), | |
gr.Label(label="Label Confidence") | |
], | |
title="Hellenic Sentiment AI", | |
description=None, | |
article=None, | |
theme="default", | |
flagging_dir=None, | |
favicon_path=None, | |
css=None, | |
analytics_script=None, | |
allow_flagging="never", | |
allow_screenshot=True, | |
enable_queue=True, | |
show_input=True, | |
show_output=True, | |
footer="Development by Geo Sar" | |
) | |
iface.launch(share=True) |