aineid / app.py
grosenthal's picture
start work on explainer page
6873a01
import json
import subprocess
from cltk.core.data_types import Process
from dataclasses import dataclass
from copy import deepcopy
from boltons.cacheutils import cachedproperty
from cltk.core.data_types import Doc, Word
import subprocess
import re
import string
from cltk.tokenizers.lat.lat import LatinWordTokenizer
from cltk.core.data_types import Process, Pipeline
from cltk.languages.utils import get_lang
from cltk.alphabet.processes import LatinNormalizeProcess
from cltk.nlp import NLP
from cltk.text.processes import DefaultPunctuationRemovalProcess
from fastapi import FastAPI
from fastapi.responses import FileResponse
from fastapi.staticfiles import StaticFiles
from fastapi.middleware.cors import CORSMiddleware
from typing import Optional
import json
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import morph_simplifier
import json
import os
app = FastAPI()
origins = ["*"]
app.add_middleware(
CORSMiddleware,
allow_origins=origins,
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
@dataclass
class LatinWhitakersWordsMorphology(Process):
"""A simple ``Process`` for giving the stem and morphological features
of a latin word using Whitakers Words
"""
language: str = None
@cachedproperty
def algorithm(self):
return None
def parse_word(self, tup):
index, (word_tup) = tup
word_obj, word_lookup = word_tup
word_obj.word_lookup = word_lookup
word_lookup = word_lookup.strip()
if word_obj.string in [',', ":", "'", '"', ".", ";"] or "UNKNOWN" in word_lookup or "" == word_lookup:
word_obj.stem = word_obj.string
word_obj.morph = "OTHER"
word_obj.case = ""
else:
letter_swap = False
# shit like XIIX, why was this written??
if "Bad Roman Numeral?" in word_lookup:
word_obj.stem = word_obj.string
word_obj.morph = "NUM20XXXCARD"
word_obj.case = ""
return word_obj
if "WORD_EDIT" in word_lookup:
letter_swap = True
word_lookup = word_lookup.replace("WORD_EDIT\n", "")
# form of sum/esse/
if word_lookup[0] == '.':
word_obj.stem = "esse"
word_obj.morph = "".join(word_lookup.split("\n")[0].split(" ")[1:]).replace("Late", "").replace("Early", "").replace("N98XXM", "ADV")
word_obj.case = word_obj.string
return word_obj
try:
# alicuius - [XXXAO] starts the line
if word_lookup.split("\n")[1].strip()[0] == "[":
sp = word_lookup.split("\n")
word_lookup = sp[0] + "\n" + sp[2]
except Exception as e:
print(e)
#i/j u/v d/t swap, need to drop another line
if word_lookup.split(" ")[0].split(".")[0] == "Word":
word_lookup = "\n".join(word_lookup.split("\n")[2:])
letter_swap = True
# Cardinal number
if "CARD" in word_lookup and "." not in word_lookup.split(" ")[0]:
word_obj.stem = word_lookup.split(" ")[0]
word_obj.morph = "".join(word_lookup.split("\n")[0].split(" ")[1:]).replace("Late", "").replace("Early", "").replace("N98XXM", "ADV")
word_obj.case = ""
return word_obj
if word_lookup.split(" ")[0].replace(".", "").replace("ivi", "ii").replace("v", "u").replace("j", "i").strip().lower() != word_obj.string.lower().replace("j", "i").replace("v.i", "").replace("ivi", "ii").replace("-", "").replace("v", "u"):
if word_lookup.split(" ")[0].replace(".", "").strip().lower() == 'special_replace':
word_obj.stem = word_obj.string
word_obj.morph = "V51PRESACTIVEIND3P"
word_obj.case = ""
return word_obj
elif word_lookup.split(" ")[0].replace(".", "").strip().lower() == 'iri_special':
word_obj.stem = word_obj.string
word_obj.morph = "V31FUTPASSIVEINF0X"
word_obj.case = ""
return word_obj
if index != self.l - 1 and not letter_swap:
try:
word_lookup = word_lookup.split("\n")[2]
word_obj.word_lookup = word_lookup
except:
word_obj.word_lookup = word_lookup
word_obj.stem = word_lookup.split(" ")[0].split(".")[0]
word_obj.morph = "".join(word_lookup.split("\n")[0].split(" ")[1:]).replace("Late", "").replace("Early", "").replace("N98XXM", "ADV")
word_obj.case = word_lookup.split(" ")[0].split(".")[1] if "." in word_lookup.split(" ")[0] else ""
return word_obj
def run(self, input_doc: Doc) -> Doc:
output_doc = deepcopy(input_doc)
output_doc.words = [word for word in output_doc.words if word is not None and word.string != '-']
self.l = len(output_doc.words)
words =re.sub(r"SUPINE \+ iri.*\n", "\n\nIRI_SPECIAL ", re.sub(r"PPL\+sunt.*\n\nsum|Syncope s => vis *\n\n", "", "\n".join(re.split(r"\n=>|=>\n",subprocess.check_output(["./words"],input=" ".join([word.string.replace("j","i") for word in output_doc.words]), cwd='./bin/', text=True), maxsplit=1)[1].split("\n")[:-6])
.replace("MORE - hit RETURN/ENTER to continue\nUnexpected exception in PAUSE", "") \
.replace("\n*", '\n') \
.replace("PERF PASSIVE PPL + verb TO_BE => PASSIVE perfect system", "\n\nSPECIAL_REPLACE") \
.replace("FUT PASSIVE PPL + esse => PRES PASSIVE INF", "\n\nSPECIAL_REPLACE") \
.replace("\nFUT PASSIVE PPL + verb TO_BE => PASSIVE Periphrastic - should/ought/had to", "\n\nSPECIAL_REPLACE") \
.replace("\nFUT ACTIVE PPL + verb TO_BE => ACTIVE Periphrastic - about to, going to", "\n\nSPECIAL_REPLACE") \
.replace("\nFUT PASSIVE PPL + esse => PASSIVE Periphrastic - should/ought/had to", "\n\nSPECIAL_REPLACE") \
.replace("\nFUT ACT PPL+fuisse => PERF ACT INF Periphrastic - to have been about/going to", "\n\nSPECIAL_REPLACE") \
.replace("\nFUT PASSIVE PPL + fuisse => PERF PASSIVE INF Periphrastic - about to, going to", "\n\nSPECIAL_REPLACE") \
.replace("\nFUT ACTIVE PPL + esse => ACTIVE Periphrastic - about to, going to", "\n\nSPECIAL_REPLACE") \
.replace("\nFUT ACTIVE PPL + esse => PRES Periphastic/FUT ACTIVE INF - be about/going to", "\n\nSPECIAL_REPLACE") \
.replace("Syncope s => vis\n\n", "WORD_EDIT") \
.replace("Syncope s => vis \n\n", "WORD_EDIT") \
.replace("\nSyncope ii => ivi \nSyncopated perfect ivi can drop 'v' without contracting vowel", "WORD_EDIT") \
.replace("Syncope s => vis \nSyncopated perfect often drops the 'v' and contracts vowel", "WORD_EDIT") \
.replace("\nPERF PASSIVE PPL + esse => PERF PASSIVE INF", "\n\nSPECIAL_REPLACE"))) \
.replace("\nSlur sub/su~ \nAn initial 'sub' may be rendered by su~", "WORD_EDIT") \
.replace("\nSyncope r => v.r \n\n", "WORD_EDIT") \
.split("\n\n")
output_tokens = list(map(self.parse_word, enumerate(zip(output_doc.words, words))))
return output_tokens
@dataclass
class LatinTokenizationProcessWithPropers(Process):
@cachedproperty
def algorithm(self):
return LatinWordTokenizer()
def run(self, input_doc: Doc) -> Doc:
output_doc = deepcopy(input_doc)
output_doc.words = []
tokenizer_obj = self.algorithm
enclitics_exceptions=LatinWordTokenizer.EXCEPTIONS + ["beniamin", "mosen", "hegesian", "bitumen", "aaron", "aristomene", 'disan', 'aran', 'lothan', 'amdan', 'amdan', 'esban', 'iethran', 'charan', "restitue", "resen"]
tokens = tokenizer_obj.tokenize(output_doc.raw, enclitics_exceptions=enclitics_exceptions, enclitics=['que', 'n', 'ne', 'ue', 've', 'st'])
indices = tokenizer_obj.compute_indices(output_doc.raw, tokens)
for index, token in enumerate(tokens):
word_obj = Word(
string=token,
index_token=index,
index_char_start=indices[index],
index_char_stop=indices[index] + len(token),
)
output_doc.words.append(word_obj)
return output_doc
pipe_morph = Pipeline(description="A custom Latin pipeline", processes=[LatinNormalizeProcess, LatinTokenizationProcessWithPropers, DefaultPunctuationRemovalProcess, LatinWhitakersWordsMorphology], language=get_lang("lat"))
nlp_morph = NLP(language='lat', custom_pipeline = pipe_morph, suppress_banner=True)
def process_line_morph(line):
an = nlp_morph.analyze(line.translate(str.maketrans('', '', string.punctuation)).replace('(','').replace(')','').replace("β€œ", "").replace("”", "").replace("β€”", ":"))
output_line = ""
for word in an:
if not word:
continue
output_line += word.stem + (" " + word.morph + " " if word.morph != "" else " ")
return output_line[:-1].replace("\n", "").replace(" ", " ")
def process_line_morph_simplified(line):
an = nlp_morph.analyze(line.translate(str.maketrans('', '', string.punctuation)).replace('(','').replace(')','').replace("β€œ", "").replace("”", "").replace("β€”", ":"))
output_line = ""
for word in an:
if not word:
continue
output_line += word.stem + (" " + morph_simplifier.simplify_form(word.morph) + " " if word.morph != "" else " ")
return output_line[:-1].replace("\n", "").replace(" ", " ")
def process_line_case(line):
an = nlp_morph.analyze(line.translate(str.maketrans('', '', string.punctuation)).replace('(','').replace(')','').replace("β€œ", "").replace("”", "").replace("β€”", ":"))
output_line = ""
for word in an:
if not word:
continue
output_line += (word.stem) + (" CASE_" + word.case + " " if word.case != "" else " ")
return output_line[:-1].replace("\n", "").replace(" ", " ")
base_tokenizer = AutoTokenizer.from_pretrained("grosenthal/la_en_base")
morph_tokenizer = AutoTokenizer.from_pretrained("grosenthal/la_en_morphology")
morph_simplified_tokenizer = AutoTokenizer.from_pretrained("grosenthal/la_en_morph_simplified")
case_tokenizer = AutoTokenizer.from_pretrained("grosenthal/la_en_case")
base_model = AutoModelForSeq2SeqLM.from_pretrained("grosenthal/la_en_base")
morph_model = AutoModelForSeq2SeqLM.from_pretrained("grosenthal/la_en_morphology")
morph_simplified_model = AutoModelForSeq2SeqLM.from_pretrained("grosenthal/la_en_morph_simplified")
case_model = AutoModelForSeq2SeqLM.from_pretrained("grosenthal/la_en_case")
def tokenize(tokenizer, text):
split_text = tokenizer.tokenize(text, truncation=True, max_length=128)
input_ids = tokenizer(text, truncation=True, max_length=128)['input_ids']
return {
"text": split_text,
"ids": input_ids
}
tokenize_base = lambda t: tokenize(base_tokenizer, t)
tokenize_morph = lambda t: tokenize(morph_tokenizer, t)
tokenize_morph_simplified = lambda t: tokenize(morph_simplified_tokenizer, t)
tokenize_case = lambda t: tokenize(case_tokenizer, t)
def translate(model, tokenizer, text):
translated = model.generate(**tokenizer(text, return_tensors="pt", padding=True, truncation=True))
translated_line = [tokenizer.decode(t, skip_special_tokens=True) for t in translated]
return translated_line
translate_base = lambda t: translate(base_model, base_tokenizer, t)
translate_morph = lambda t: translate(morph_model, morph_tokenizer, t)
translate_morph_simplified = lambda t: translate(morph_simplified_model, morph_simplified_tokenizer, t)
translate_case = lambda t: translate(case_model, case_tokenizer, t)
def process_handler(text):
print("in handler")
morph_text = process_line_morph(text)
morph_simplified_text = process_line_morph_simplified(text)
case_text = process_line_case(text)
return {
'processed_texts':{
'base': text,
'morph': morph_text,
'morph_simplified': morph_simplified_text,
'case': case_text
},
'tokenized':{
'base': tokenize_base(text),
'morph': tokenize_morph(morph_text),
'morph_simplified': tokenize_morph_simplified(morph_simplified_text),
'case': tokenize_case(case_text),
}
}
@app.get('/process/')
async def process(text: Optional[str] = None):
if text is not None:
result = process_handler(text)
return json.dumps(result)
else:
return json.dumps({"error": "Missing required parameter 'text'"}), 400
@app.get('/translate_base/')
async def translate_base_http(text: Optional[str] = None):
if text is not None:
result = translate_base(text)
return json.dumps(result)
else:
return json.dumps({"error": "Missing required parameter 'text'"}), 400
@app.get('/translate_case/')
async def translate_case_http(text: Optional[str] = None):
if text is not None:
result = translate_case(text)
return json.dumps(result)
else:
return json.dumps({"error": "Missing required parameter 'text'"}), 400
@app.get('/translate_morph/')
async def translate_morph_http(text: Optional[str] = None):
if text is not None:
result = translate_morph(text)
return json.dumps(result)
else:
return json.dumps({"error": "Missing required parameter 'text'"}), 400
@app.get('/translate_morph_simplified/')
async def translate_morph_simplified_http(text: Optional[str] = None):
if text is not None:
result = translate_morph_simplified(text)
return json.dumps(result)
else:
return json.dumps({"error": "Missing required parameter 'text'"}), 400
@app.get('/translate_all/')
async def translate_all(text: Optional[str] = None):
if text is not None:
base_result = translate_base(text)
case_result = translate_case(process_line_case(text))
morph_result = translate_morph(process_line_morph(text))
morph_simplified_result = translate_morph_simplified(process_line_morph_simplified(text))
return json.dumps({
'base': base_result,
'case': case_result,
'morph': morph_result,
'morph_simplified': morph_simplified_result
})
else:
return json.dumps({"error": "Missing required parameter 'text'"}), 400
app.mount("/", StaticFiles(directory="src/aineid/build", html=True), name="static")
@app.get("/")
def index() -> FileResponse:
return FileResponse(path="/app/static/index.html", media_type="text/html")