Spaces:
Running
Running
Upload with huggingface_hub
Browse files- DESCRIPTION.md +1 -0
- README.md +1 -1
- app.py +0 -7
DESCRIPTION.md
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
This simple demo takes advantage of Gradio's HighlightedText, JSON and HTML outputs to create a clear NER segmentation.
|
README.md
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
|
| 2 |
---
|
| 3 |
title: text_analysis
|
| 4 |
-
emoji:
|
| 5 |
colorFrom: indigo
|
| 6 |
colorTo: indigo
|
| 7 |
sdk: gradio
|
|
|
|
| 1 |
|
| 2 |
---
|
| 3 |
title: text_analysis
|
| 4 |
+
emoji: 🔥
|
| 5 |
colorFrom: indigo
|
| 6 |
colorTo: indigo
|
| 7 |
sdk: gradio
|
app.py
CHANGED
|
@@ -1,16 +1,11 @@
|
|
| 1 |
-
# URL: https://huggingface.co/spaces/gradio/text_analysis
|
| 2 |
-
# DESCRIPTION: This simple demo takes advantage of Gradio's HighlightedText, JSON and HTML outputs to create a clear NER segmentation.
|
| 3 |
-
# imports
|
| 4 |
import gradio as gr
|
| 5 |
import os
|
| 6 |
os.system('python -m spacy download en_core_web_sm')
|
| 7 |
import spacy
|
| 8 |
from spacy import displacy
|
| 9 |
|
| 10 |
-
# load the model
|
| 11 |
nlp = spacy.load("en_core_web_sm")
|
| 12 |
|
| 13 |
-
# define the core function
|
| 14 |
def text_analysis(text):
|
| 15 |
doc = nlp(text)
|
| 16 |
html = displacy.render(doc, style="dep", page=True)
|
|
@@ -30,7 +25,6 @@ def text_analysis(text):
|
|
| 30 |
|
| 31 |
return pos_tokens, pos_count, html
|
| 32 |
|
| 33 |
-
# define the interface, with a textbox input, and three outputs: HighlightedText, JSON, and HTML
|
| 34 |
demo = gr.Interface(
|
| 35 |
text_analysis,
|
| 36 |
gr.Textbox(placeholder="Enter sentence here..."),
|
|
@@ -41,5 +35,4 @@ demo = gr.Interface(
|
|
| 41 |
],
|
| 42 |
)
|
| 43 |
|
| 44 |
-
# launch
|
| 45 |
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import os
|
| 3 |
os.system('python -m spacy download en_core_web_sm')
|
| 4 |
import spacy
|
| 5 |
from spacy import displacy
|
| 6 |
|
|
|
|
| 7 |
nlp = spacy.load("en_core_web_sm")
|
| 8 |
|
|
|
|
| 9 |
def text_analysis(text):
|
| 10 |
doc = nlp(text)
|
| 11 |
html = displacy.render(doc, style="dep", page=True)
|
|
|
|
| 25 |
|
| 26 |
return pos_tokens, pos_count, html
|
| 27 |
|
|
|
|
| 28 |
demo = gr.Interface(
|
| 29 |
text_analysis,
|
| 30 |
gr.Textbox(placeholder="Enter sentence here..."),
|
|
|
|
| 35 |
],
|
| 36 |
)
|
| 37 |
|
|
|
|
| 38 |
demo.launch()
|