Update missing documentation
Browse files- app/tasks/inference.py +67 -2
- app/tasks/training.py +144 -71
- docker-compose.yaml +7 -1
app/tasks/inference.py
CHANGED
@@ -8,15 +8,29 @@ import time
|
|
8 |
from scipy.special import softmax
|
9 |
|
10 |
# HuggingFace Model to be used for inferencing
|
11 |
-
MODEL =
|
|
|
12 |
|
13 |
class InferenceTask:
|
14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
def __init__(self):
|
16 |
self.clear()
|
17 |
self.load_model()
|
18 |
|
19 |
def load_model(self):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
try:
|
21 |
self.__tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
22 |
self.__config = AutoConfig.from_pretrained(MODEL)
|
@@ -30,15 +44,37 @@ class InferenceTask:
|
|
30 |
return True
|
31 |
|
32 |
def clear(self):
|
|
|
|
|
|
|
33 |
self.__is_loaded = False
|
34 |
self.__tokenizer = None
|
35 |
self.__config = None
|
36 |
self.__model = None
|
37 |
|
38 |
def is_loaded(self):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
return self.__is_loaded
|
40 |
|
41 |
def predict(self, messages: list[str]):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
if len(messages) == 0:
|
43 |
return None
|
44 |
|
@@ -69,6 +105,15 @@ class InferenceTask:
|
|
69 |
return labelized_scores
|
70 |
|
71 |
def __calculate_mean_sentiment(self, labelized_scores: list):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
72 |
total_samples = float(len(labelized_scores))
|
73 |
|
74 |
mean_sentiment = {
|
@@ -88,8 +133,17 @@ class InferenceTask:
|
|
88 |
|
89 |
return mean_sentiment
|
90 |
|
91 |
-
# Preprocess text (username and link placeholders)
|
92 |
def __preprocess(self, messages: list[str]):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
msg_list = []
|
94 |
for message in messages:
|
95 |
new_message = []
|
@@ -101,6 +155,17 @@ class InferenceTask:
|
|
101 |
return msg_list
|
102 |
|
103 |
def __labelize(self, scores):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
104 |
output = {}
|
105 |
ranking = np.argsort(scores)
|
106 |
ranking = ranking[::-1]
|
|
|
8 |
from scipy.special import softmax
|
9 |
|
10 |
# HuggingFace Model to be used for inferencing
|
11 |
+
MODEL = "gpicciuca/twitter-roberta-base-sentiment-latest"
|
12 |
+
# MODEL = "cardiffnlp/twitter-roberta-base-sentiment-latest"
|
13 |
|
14 |
class InferenceTask:
|
15 |
|
16 |
+
"""
|
17 |
+
This class encapsulates the entire inferencing logic by using HuggingFace's Transformers library.
|
18 |
+
It offers a convenient "predict()" method that returns a list of dictionaries, where each
|
19 |
+
dictionary contains the sentiment analysis for each message that has been evaluated.
|
20 |
+
"""
|
21 |
+
|
22 |
def __init__(self):
|
23 |
self.clear()
|
24 |
self.load_model()
|
25 |
|
26 |
def load_model(self):
|
27 |
+
"""
|
28 |
+
Loads the classification model, its configuration and the tokenizer required for pre-processing
|
29 |
+
any text that needs to be inferenced later on.
|
30 |
+
|
31 |
+
Returns:
|
32 |
+
bool: True if loading succeeded, false otherwise
|
33 |
+
"""
|
34 |
try:
|
35 |
self.__tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
36 |
self.__config = AutoConfig.from_pretrained(MODEL)
|
|
|
44 |
return True
|
45 |
|
46 |
def clear(self):
|
47 |
+
"""
|
48 |
+
Resets the state of this instance
|
49 |
+
"""
|
50 |
self.__is_loaded = False
|
51 |
self.__tokenizer = None
|
52 |
self.__config = None
|
53 |
self.__model = None
|
54 |
|
55 |
def is_loaded(self):
|
56 |
+
"""
|
57 |
+
Checks if the class is ready and can be used, depending on whether
|
58 |
+
a model has been loaded.
|
59 |
+
|
60 |
+
Returns:
|
61 |
+
bool: True if model was loaded, false otherwise
|
62 |
+
"""
|
63 |
return self.__is_loaded
|
64 |
|
65 |
def predict(self, messages: list[str]):
|
66 |
+
"""
|
67 |
+
Method taking a list of messages to perform the sentiment classification on.
|
68 |
+
Each inference run is logged in MLFlow under the experiment 'Sentiment Analysis'.
|
69 |
+
For efficiency, only the average of the whole bulk request is logged.
|
70 |
+
|
71 |
+
Args:
|
72 |
+
messages (list[str]): List of messages to classify
|
73 |
+
|
74 |
+
Returns:
|
75 |
+
list[dict]: A list of dictionaries where each element contains the probabilities
|
76 |
+
for 'positive', 'neutral' and 'negative' sentiment.
|
77 |
+
"""
|
78 |
if len(messages) == 0:
|
79 |
return None
|
80 |
|
|
|
105 |
return labelized_scores
|
106 |
|
107 |
def __calculate_mean_sentiment(self, labelized_scores: list):
|
108 |
+
"""
|
109 |
+
Calculates the average sentiment over a list of classified messages.
|
110 |
+
|
111 |
+
Args:
|
112 |
+
labelized_scores (list): List of labelled scores resulting from the prediction step.
|
113 |
+
|
114 |
+
Returns:
|
115 |
+
dict: Dictionary with average values for for 'positive', 'neutral' and 'negative'.
|
116 |
+
"""
|
117 |
total_samples = float(len(labelized_scores))
|
118 |
|
119 |
mean_sentiment = {
|
|
|
133 |
|
134 |
return mean_sentiment
|
135 |
|
|
|
136 |
def __preprocess(self, messages: list[str]):
|
137 |
+
"""
|
138 |
+
Preprocesses the messages to remove certain patterns that are not
|
139 |
+
required for inferencing. User tags and http links are stripped out.
|
140 |
+
|
141 |
+
Args:
|
142 |
+
messages (list[str]): List of messages to preprocess
|
143 |
+
|
144 |
+
Returns:
|
145 |
+
list[str]: List of processed messages without user tags and links
|
146 |
+
"""
|
147 |
msg_list = []
|
148 |
for message in messages:
|
149 |
new_message = []
|
|
|
155 |
return msg_list
|
156 |
|
157 |
def __labelize(self, scores):
|
158 |
+
"""
|
159 |
+
Helper method to transform numpy labels, coming as a result of the classification,
|
160 |
+
back into their equivalent textual version so that they are human-readable by using
|
161 |
+
the model's configuration.
|
162 |
+
|
163 |
+
Args:
|
164 |
+
scores: Result from prediction for each individual message
|
165 |
+
|
166 |
+
Returns:
|
167 |
+
dict: Dictionary containing the sentiment prediction with human-readable labels
|
168 |
+
"""
|
169 |
output = {}
|
170 |
ranking = np.argsort(scores)
|
171 |
ranking = ranking[::-1]
|
app/tasks/training.py
CHANGED
@@ -10,19 +10,17 @@ from transformers import (
|
|
10 |
pipeline,
|
11 |
)
|
12 |
from huggingface_hub import login, logout
|
|
|
13 |
|
14 |
import os
|
15 |
import mlflow
|
16 |
from tasks.inference import infer_task
|
17 |
from config import is_test_mode
|
|
|
18 |
|
19 |
-
"""
|
20 |
-
Documentation:
|
21 |
-
- https://huggingface.co/docs/transformers/en//training
|
22 |
-
- https://mlflow.org/docs/latest/llms/transformers/tutorials/fine-tuning/transformers-fine-tuning
|
23 |
-
"""
|
24 |
|
25 |
-
MODEL = "cardiffnlp/twitter-roberta-base-sentiment-latest"
|
|
|
26 |
DATASET = "zeroshot/twitter-financial-news-sentiment"
|
27 |
HF_DEST_REPO = "financial-twitter-roberta-sentiment"
|
28 |
|
@@ -30,6 +28,17 @@ RNG_SEED = 22
|
|
30 |
|
31 |
class TrainingTask:
|
32 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
TRAINING_TASK_INST_SINGLETON = None
|
34 |
|
35 |
def __init__(self):
|
@@ -45,12 +54,28 @@ class TrainingTask:
|
|
45 |
self.__trainer = None
|
46 |
self.__run_id = None
|
47 |
|
|
|
|
|
48 |
@staticmethod
|
49 |
def has_instance():
|
|
|
|
|
|
|
|
|
|
|
|
|
50 |
return TrainingTask.TRAINING_TASK_INST_SINGLETON is not None
|
51 |
|
52 |
@staticmethod
|
53 |
def get_instance():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
if TrainingTask.TRAINING_TASK_INST_SINGLETON is None:
|
55 |
TrainingTask.TRAINING_TASK_INST_SINGLETON = TrainingTask()
|
56 |
|
@@ -58,16 +83,37 @@ class TrainingTask:
|
|
58 |
|
59 |
@staticmethod
|
60 |
def clear_instance():
|
|
|
|
|
|
|
61 |
del TrainingTask.TRAINING_TASK_INST_SINGLETON
|
62 |
TrainingTask.TRAINING_TASK_INST_SINGLETON = None
|
63 |
|
64 |
def has_error(self):
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
return self.__has_error
|
66 |
|
67 |
def is_done(self):
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
return self.__is_done
|
69 |
|
70 |
def __call__(self, *args, **kwds):
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
self.__has_error = False
|
72 |
self.__is_done = False
|
73 |
|
@@ -83,6 +129,7 @@ class TrainingTask:
|
|
83 |
self.__load_datasets()
|
84 |
self.__tokenize()
|
85 |
self.__load_model()
|
|
|
86 |
self.__train()
|
87 |
self.__evaluate()
|
88 |
self.__deploy()
|
@@ -92,16 +139,25 @@ class TrainingTask:
|
|
92 |
finally:
|
93 |
self.__is_done = True
|
94 |
|
|
|
|
|
|
|
|
|
|
|
95 |
logout()
|
96 |
|
97 |
self.__reload_inference_model()
|
98 |
|
99 |
-
def __load_datasets(self):
|
100 |
-
|
|
|
|
|
|
|
|
|
101 |
dataset = load_dataset(DATASET)
|
102 |
|
103 |
-
# Split train/test by
|
104 |
-
dataset_train_test = dataset["train"].train_test_split(test_size=
|
105 |
self.__train_dataset = dataset_train_test["train"]
|
106 |
self.__test_dataset = dataset_train_test["test"]
|
107 |
|
@@ -117,6 +173,12 @@ class TrainingTask:
|
|
117 |
self.__test_dataset = self.__test_dataset.map(label_filter)
|
118 |
|
119 |
def __tokenize(self):
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
# Load the tokenizer for the model.
|
121 |
self.__tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
122 |
|
@@ -138,6 +200,9 @@ class TrainingTask:
|
|
138 |
self.__test_tokenized = self.__test_tokenized.remove_columns(["text"]).shuffle(seed=RNG_SEED)
|
139 |
|
140 |
def __load_model(self):
|
|
|
|
|
|
|
141 |
# Set the mapping between int label and its meaning.
|
142 |
id2label = {0: "Bearish", 1: "Neutral", 2: "Bullish"}
|
143 |
label2id = {"Bearish": 0, "Neutral": 1, "Bullish": 2}
|
@@ -150,7 +215,32 @@ class TrainingTask:
|
|
150 |
id2label=id2label,
|
151 |
)
|
152 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
def __train(self):
|
|
|
|
|
|
|
|
|
|
|
|
|
154 |
# Define the target optimization metric
|
155 |
metric = evaluate.load("accuracy")
|
156 |
|
@@ -161,23 +251,14 @@ class TrainingTask:
|
|
161 |
return metric.compute(predictions=predictions, references=labels)
|
162 |
|
163 |
# Checkpoints will be output to this `training_output_dir`.
|
164 |
-
training_output_dir = "
|
165 |
training_args = TrainingArguments(
|
166 |
output_dir=training_output_dir,
|
167 |
eval_strategy="epoch",
|
168 |
per_device_train_batch_size=8,
|
169 |
per_device_eval_batch_size=8,
|
170 |
logging_steps=8,
|
171 |
-
num_train_epochs=
|
172 |
-
)
|
173 |
-
|
174 |
-
# Instantiate a `Trainer` instance that will be used to initiate a training run.
|
175 |
-
self.__trainer = Trainer(
|
176 |
-
model=self.__model,
|
177 |
-
args=training_args,
|
178 |
-
train_dataset=self.__train_tokenized,
|
179 |
-
eval_dataset=self.__test_tokenized,
|
180 |
-
compute_metrics=compute_metrics,
|
181 |
)
|
182 |
|
183 |
mlflow.set_tracking_uri(os.environ["MLFLOW_ENDPOINT"])
|
@@ -185,62 +266,54 @@ class TrainingTask:
|
|
185 |
|
186 |
with mlflow.start_run() as run:
|
187 |
self.__run_id = run.info.run_id
|
188 |
-
self.__trainer.train()
|
189 |
-
|
190 |
-
def __evaluate(self):
|
191 |
-
tuned_pipeline = pipeline(
|
192 |
-
task="text-classification",
|
193 |
-
model=self.__trainer.model,
|
194 |
-
batch_size=8,
|
195 |
-
tokenizer=self.__tokenizer,
|
196 |
-
device="cpu", # or cuda
|
197 |
-
)
|
198 |
-
|
199 |
-
quick_check = (
|
200 |
-
"I have a question regarding the project development timeline and allocated resources; "
|
201 |
-
"specifically, how certain are you that John and Ringo can work together on writing this next song? "
|
202 |
-
"Do we need to get Paul involved here, or do you truly believe, as you said, 'nah, they got this'?"
|
203 |
-
)
|
204 |
-
|
205 |
-
result = tuned_pipeline(quick_check)
|
206 |
-
logger.debug("Test evaluation of fine-tuned model: %s %.6f" % (result[0]["label"], result[0]["score"]))
|
207 |
-
|
208 |
-
# Define a set of parameters that we would like to be able to flexibly override at inference time, along with their default values
|
209 |
-
model_config = {"batch_size": 8}
|
210 |
-
|
211 |
-
# Infer the model signature, including a representative input, the expected output, and the parameters that we would like to be able to override at inference time.
|
212 |
-
signature = mlflow.models.infer_signature(
|
213 |
-
["This is a test!", "And this is also a test."],
|
214 |
-
mlflow.transformers.generate_signature_output(
|
215 |
-
tuned_pipeline, ["This is a test response!", "So is this."]
|
216 |
-
),
|
217 |
-
params=model_config,
|
218 |
-
)
|
219 |
-
|
220 |
-
# Log the pipeline to the existing training run
|
221 |
-
with mlflow.start_run(run_id=self.__run_id):
|
222 |
-
model_info = mlflow.transformers.log_model(
|
223 |
-
transformers_model=tuned_pipeline,
|
224 |
-
artifact_path="fine_tuned",
|
225 |
-
signature=signature,
|
226 |
-
input_example=["Pass in a string", "And have it mark as spam or not."],
|
227 |
-
model_config=model_config,
|
228 |
-
)
|
229 |
-
|
230 |
-
# Load our saved model in the native transformers format
|
231 |
-
loaded = mlflow.transformers.load_model(model_uri=model_info.model_uri)
|
232 |
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
|
|
|
|
|
|
237 |
)
|
|
|
238 |
|
239 |
-
|
240 |
-
|
|
|
|
|
|
|
|
|
241 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
242 |
def __deploy(self):
|
|
|
|
|
|
|
243 |
self.__trainer.push_to_hub(HF_DEST_REPO)
|
244 |
|
245 |
def __reload_inference_model(self):
|
|
|
|
|
|
|
246 |
infer_task.load_model()
|
|
|
10 |
pipeline,
|
11 |
)
|
12 |
from huggingface_hub import login, logout
|
13 |
+
from scipy.special import softmax
|
14 |
|
15 |
import os
|
16 |
import mlflow
|
17 |
from tasks.inference import infer_task
|
18 |
from config import is_test_mode
|
19 |
+
import time
|
20 |
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
+
# MODEL = "cardiffnlp/twitter-roberta-base-sentiment-latest"
|
23 |
+
MODEL = "gpicciuca/twitter-roberta-base-sentiment-latest"
|
24 |
DATASET = "zeroshot/twitter-financial-news-sentiment"
|
25 |
HF_DEST_REPO = "financial-twitter-roberta-sentiment"
|
26 |
|
|
|
28 |
|
29 |
class TrainingTask:
|
30 |
|
31 |
+
"""
|
32 |
+
Implements a sequence of actions to control the training phase of the model.
|
33 |
+
The class implements a callable overload method which initializes the old model,
|
34 |
+
loads and prepares datasets and proceeds with the training.
|
35 |
+
Upon completion, the new model will be uploaded to the HuggingFace repo only
|
36 |
+
if its accuracy did not drop compared to the old model.
|
37 |
+
|
38 |
+
This class is managed via singleton so that there may only be one
|
39 |
+
instance at any time, unless manually allocated.
|
40 |
+
"""
|
41 |
+
|
42 |
TRAINING_TASK_INST_SINGLETON = None
|
43 |
|
44 |
def __init__(self):
|
|
|
54 |
self.__trainer = None
|
55 |
self.__run_id = None
|
56 |
|
57 |
+
self.__old_accuracy = 0.0
|
58 |
+
|
59 |
@staticmethod
|
60 |
def has_instance():
|
61 |
+
"""
|
62 |
+
Checks if a global singleton instance is available
|
63 |
+
|
64 |
+
Returns:
|
65 |
+
bool: True if instance available, false otherwise
|
66 |
+
"""
|
67 |
return TrainingTask.TRAINING_TASK_INST_SINGLETON is not None
|
68 |
|
69 |
@staticmethod
|
70 |
def get_instance():
|
71 |
+
"""
|
72 |
+
Returns the globally allocated singleton instance.
|
73 |
+
Instance will be allocated with this method if none was previously
|
74 |
+
allocated yet.
|
75 |
+
|
76 |
+
Returns:
|
77 |
+
TrainingTask: Singleton instance
|
78 |
+
"""
|
79 |
if TrainingTask.TRAINING_TASK_INST_SINGLETON is None:
|
80 |
TrainingTask.TRAINING_TASK_INST_SINGLETON = TrainingTask()
|
81 |
|
|
|
83 |
|
84 |
@staticmethod
|
85 |
def clear_instance():
|
86 |
+
"""
|
87 |
+
Destroys the global instance
|
88 |
+
"""
|
89 |
del TrainingTask.TRAINING_TASK_INST_SINGLETON
|
90 |
TrainingTask.TRAINING_TASK_INST_SINGLETON = None
|
91 |
|
92 |
def has_error(self):
|
93 |
+
"""
|
94 |
+
Checks whether an error occurred during training.
|
95 |
+
|
96 |
+
Returns:
|
97 |
+
bool: True if an exception was raised, false otherwise
|
98 |
+
"""
|
99 |
return self.__has_error
|
100 |
|
101 |
def is_done(self):
|
102 |
+
"""
|
103 |
+
Checks whether the training is done.
|
104 |
+
|
105 |
+
Returns:
|
106 |
+
bool: True if done, false if still ongoing.
|
107 |
+
"""
|
108 |
return self.__is_done
|
109 |
|
110 |
def __call__(self, *args, **kwds):
|
111 |
+
"""
|
112 |
+
Callable overload for this class. Initiates the training sequence
|
113 |
+
for the existing model by loading it, loading and preparing datasets,
|
114 |
+
fine-tuning and comparing performance against old model over the test dataset.
|
115 |
+
"""
|
116 |
+
|
117 |
self.__has_error = False
|
118 |
self.__is_done = False
|
119 |
|
|
|
129 |
self.__load_datasets()
|
130 |
self.__tokenize()
|
131 |
self.__load_model()
|
132 |
+
self.__check_old_accuracy()
|
133 |
self.__train()
|
134 |
self.__evaluate()
|
135 |
self.__deploy()
|
|
|
139 |
finally:
|
140 |
self.__is_done = True
|
141 |
|
142 |
+
if self.has_error():
|
143 |
+
logger.error("Training did not complete and terminated with an error")
|
144 |
+
else:
|
145 |
+
logger.info("Training completed")
|
146 |
+
|
147 |
logout()
|
148 |
|
149 |
self.__reload_inference_model()
|
150 |
|
151 |
+
def __load_datasets(self, test_size_ratio=0.2):
|
152 |
+
"""
|
153 |
+
Loads and splits the dataset in train and test sets.
|
154 |
+
"""
|
155 |
+
assert (test_size_ratio > 0.0 and test_size_ratio < 1.0)
|
156 |
+
|
157 |
dataset = load_dataset(DATASET)
|
158 |
|
159 |
+
# Split train/test by 'test_size_ratio'
|
160 |
+
dataset_train_test = dataset["train"].train_test_split(test_size=test_size_ratio)
|
161 |
self.__train_dataset = dataset_train_test["train"]
|
162 |
self.__test_dataset = dataset_train_test["test"]
|
163 |
|
|
|
173 |
self.__test_dataset = self.__test_dataset.map(label_filter)
|
174 |
|
175 |
def __tokenize(self):
|
176 |
+
"""
|
177 |
+
Loads the tokenizer previously used in the pretrained model
|
178 |
+
and uses it to tokenize the datasets so that the input to the
|
179 |
+
model remains consistent with what it has seen in previous
|
180 |
+
trainings.
|
181 |
+
"""
|
182 |
# Load the tokenizer for the model.
|
183 |
self.__tokenizer = AutoTokenizer.from_pretrained(MODEL)
|
184 |
|
|
|
200 |
self.__test_tokenized = self.__test_tokenized.remove_columns(["text"]).shuffle(seed=RNG_SEED)
|
201 |
|
202 |
def __load_model(self):
|
203 |
+
"""
|
204 |
+
Loads the model from the repository
|
205 |
+
"""
|
206 |
# Set the mapping between int label and its meaning.
|
207 |
id2label = {0: "Bearish", 1: "Neutral", 2: "Bullish"}
|
208 |
label2id = {"Bearish": 0, "Neutral": 1, "Bullish": 2}
|
|
|
215 |
id2label=id2label,
|
216 |
)
|
217 |
|
218 |
+
def __check_old_accuracy(self):
|
219 |
+
"""
|
220 |
+
Run a prediction with the old model on the tokenized test dataset
|
221 |
+
to evaluate the model's accuracy.
|
222 |
+
"""
|
223 |
+
trainer = Trainer(model=self.__model, tokenizer=self.__tokenizer)
|
224 |
+
output = trainer.predict(self.__test_tokenized)
|
225 |
+
|
226 |
+
# Get logits from the prediction output.
|
227 |
+
logits = output.predictions
|
228 |
+
# Convert logits to predicted class labels.
|
229 |
+
preds = np.argmax(logits, axis=1)
|
230 |
+
# Get the true labels.
|
231 |
+
labels = output.label_ids
|
232 |
+
|
233 |
+
# Compute accuracy.
|
234 |
+
self.__old_accuracy = (preds == labels).mean()
|
235 |
+
logger.info(f"Old model accuracy: {self.__old_accuracy:.4f}")
|
236 |
+
|
237 |
def __train(self):
|
238 |
+
"""
|
239 |
+
Performs the training/fine-tuning of the loaded model using the
|
240 |
+
tokenized train and test datasets.
|
241 |
+
The training run will be logged on the MLFlow Dashboard.
|
242 |
+
Uses the 'accuracy' metric to evaluate performance.
|
243 |
+
"""
|
244 |
# Define the target optimization metric
|
245 |
metric = evaluate.load("accuracy")
|
246 |
|
|
|
251 |
return metric.compute(predictions=predictions, references=labels)
|
252 |
|
253 |
# Checkpoints will be output to this `training_output_dir`.
|
254 |
+
training_output_dir = "./training_output"
|
255 |
training_args = TrainingArguments(
|
256 |
output_dir=training_output_dir,
|
257 |
eval_strategy="epoch",
|
258 |
per_device_train_batch_size=8,
|
259 |
per_device_eval_batch_size=8,
|
260 |
logging_steps=8,
|
261 |
+
num_train_epochs=10,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
262 |
)
|
263 |
|
264 |
mlflow.set_tracking_uri(os.environ["MLFLOW_ENDPOINT"])
|
|
|
266 |
|
267 |
with mlflow.start_run() as run:
|
268 |
self.__run_id = run.info.run_id
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
269 |
|
270 |
+
logger.info("Initializing trainer...")
|
271 |
+
self.__trainer = Trainer(
|
272 |
+
model=self.__model,
|
273 |
+
args=training_args,
|
274 |
+
train_dataset=self.__train_tokenized,
|
275 |
+
eval_dataset=self.__test_tokenized,
|
276 |
+
compute_metrics=compute_metrics,
|
277 |
)
|
278 |
+
logger.info("Trainer finished")
|
279 |
|
280 |
+
def __evaluate(self):
|
281 |
+
"""
|
282 |
+
Evaluates the fine-tuned model's performance by comparing the new
|
283 |
+
accuracy with the old one over the same test dataset.
|
284 |
+
"""
|
285 |
+
logger.info("Evaluating new model's performance")
|
286 |
|
287 |
+
with mlflow.start_run(run_id=self.__run_id):
|
288 |
+
output = self.__trainer.predict(self.__test_tokenized)
|
289 |
+
|
290 |
+
# Get logits from the prediction output.
|
291 |
+
logits = output.predictions
|
292 |
+
# Convert logits to predicted class labels.
|
293 |
+
preds = np.argmax(logits, axis=1)
|
294 |
+
# Get the true labels.
|
295 |
+
labels = output.label_ids
|
296 |
+
|
297 |
+
# Compute accuracy.
|
298 |
+
new_accuracy = (preds == labels).mean()
|
299 |
+
mlflow.log_metrics({
|
300 |
+
"old_accuracy": self.__old_accuracy,
|
301 |
+
"new_accuracy": new_accuracy
|
302 |
+
}, step=int(time.time()))
|
303 |
+
|
304 |
+
if self.__old_accuracy > new_accuracy:
|
305 |
+
raise Exception(f"New trained model's accuracy dropped {self.__old_accuracy:.9f} -> {new_accuracy:.9f}")
|
306 |
+
else:
|
307 |
+
logger.info(f"New trained model's accuracy {self.__old_accuracy:.9f} -> {new_accuracy:.9f}")
|
308 |
+
|
309 |
def __deploy(self):
|
310 |
+
"""
|
311 |
+
Uploads the fine-tuned model to HuggingFace
|
312 |
+
"""
|
313 |
self.__trainer.push_to_hub(HF_DEST_REPO)
|
314 |
|
315 |
def __reload_inference_model(self):
|
316 |
+
"""
|
317 |
+
Reloads the model used by the Inference class.
|
318 |
+
"""
|
319 |
infer_task.load_model()
|
docker-compose.yaml
CHANGED
@@ -1,5 +1,4 @@
|
|
1 |
services:
|
2 |
-
#
|
3 |
model_runner:
|
4 |
build:
|
5 |
context: .
|
@@ -19,6 +18,13 @@ services:
|
|
19 |
entrypoint: ["/usr/bin/python3", "/app/main.py"]
|
20 |
networks:
|
21 |
- airflow_tracking_network
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
networks:
|
24 |
airflow_tracking_network:
|
|
|
1 |
services:
|
|
|
2 |
model_runner:
|
3 |
build:
|
4 |
context: .
|
|
|
18 |
entrypoint: ["/usr/bin/python3", "/app/main.py"]
|
19 |
networks:
|
20 |
- airflow_tracking_network
|
21 |
+
deploy:
|
22 |
+
resources:
|
23 |
+
reservations:
|
24 |
+
devices:
|
25 |
+
- driver: nvidia
|
26 |
+
count: all
|
27 |
+
capabilities: [gpu]
|
28 |
|
29 |
networks:
|
30 |
airflow_tracking_network:
|