File size: 3,188 Bytes
b28f4eb 9b5b26a b28f4eb 9b5b26a c19d193 b28f4eb 8ce33a6 b28f4eb 6aae614 bbb6874 9b5b26a b28f4eb 8ce33a6 b28f4eb 8ce33a6 b28f4eb 9b5b26a 8c01ffb 6aae614 bbb6874 b28f4eb ae7a494 e121372 67b682b 13d500a 8c01ffb 9b5b26a 8c01ffb 861422e 9b5b26a 4028e16 8fe992b 67b682b b28f4eb 67b682b bbb6874 67b682b b28f4eb 8c01ffb 861422e 8fe992b 9b5b26a 4028e16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 |
from smolagents import CodeAgent, HfApiModel, load_tool, tool, Tool
import datetime
import os
import io
import pytz
import yaml
import torch
import soundfile as sf
from scipy import signal
from huggingface_hub import InferenceClient
from tools.final_answer import FinalAnswerTool
from tools.visit_webpage import VisitWebpageTool
from tools.web_search import DuckDuckGoSearchTool
from Gradio_UI import GradioUI
class TextToSpeechTool(Tool):
description = "This tool creates an audio tensor from the input, which is text. For audio tasks, the output from this tool is the final answer."
name = "text_to_speech"
inputs = {"text": {"type": "string", "description": "This is the text that will be converted into speech"}}
output_type = "audio"
client = InferenceClient(
provider="auto",
api_key=os.environ["HF_TOKEN"],
)
def forward(self, text: str) -> torch.Tensor:
output = self.client.text_to_speech(
text,
model="ResembleAI/chatterbox",
)
audio, samplerate = sf.read(io.BytesIO(output))
new_samplerate = 16_000
num_samples = int(len(audio) * new_samplerate / samplerate)
resampled_audio = signal.resample(audio, num_samples)
return torch.from_numpy(resampled_audio)
@tool
def get_current_time_in_timezone(timezone: str) -> str:
"""A tool that fetches the current local time in a specified timezone.
Args:
timezone: A string representing a valid timezone (e.g., 'America/New_York').
"""
try:
# Create timezone object
tz = pytz.timezone(timezone)
# Get current time in that timezone
local_time = datetime.datetime.now(tz).strftime("%Y-%m-%d %H:%M:%S")
return f"The current local time in {timezone} is: {local_time}"
except Exception as e:
return f"Error fetching time for timezone '{timezone}': {str(e)}"
final_answer = FinalAnswerTool()
web_search = DuckDuckGoSearchTool()
visit_page = VisitWebpageTool()
read_out_loud = TextToSpeechTool()
# If the agent does not answer, the model is overloaded, please use another model or the following Hugging Face Endpoint that also contains qwen2.5 coder:
# model_id='https://pflgm2locj2t89co.us-east-1.aws.endpoints.huggingface.cloud'
model = HfApiModel(
max_tokens=2096,
temperature=0.5,
model_id='Qwen/Qwen2.5-Coder-32B-Instruct',# it is possible that this model may be overloaded
custom_role_conversions=None
)
# Import tool from Hub
image_generation_tool = load_tool("agents-course/text-to-image", trust_remote_code=True)
with open("prompts.yaml", 'r') as stream:
prompt_templates = yaml.safe_load(stream)
demo = CodeAgent(
model=model,
tools=[
get_current_time_in_timezone,
read_out_loud,
image_generation_tool,
web_search,
visit_page,
final_answer
], ## add your tools here (don't remove final answer)
additional_authorized_imports=['torch.Tensor'],
max_steps=6,
verbosity_level=1,
grammar=None,
planning_interval=None,
name=None,
description=None,
prompt_templates=prompt_templates
)
GradioUI(demo).launch() |