gperdrizet's picture
Updated wikipedia search tools to get and parse wikipedia pages to HTML so that tables and other non-text elements are visible to agent. Allowed agent to import BeautifulSoup.
8b358c4 verified
raw
history blame
8.96 kB
'''HuggingFace Agents course final project GAIA agent benchmark.'''
# Standard library
import os
import requests
# Third-party
import gradio as gr
import pandas as pd
# Local/Project
from functions.agent import create_agent
# --- Constants ---
from configuration import QUESTIONS, DEFAULT_API_URL, INSTRUCTIONS
def run_and_submit_all(profile: gr.OAuthProfile | None):
"""
Fetches all questions, runs the BasicAgent on them, submits all answers,
and displays the results.
"""
# --- Determine HF Space Runtime URL and Repo URL ---
space_id = os.getenv('SPACE_ID')
if profile:
username = f'{profile.username}'
print(f'User logged in: {username}')
else:
print('User not logged in.')
return 'Please Login to Hugging Face with the button.', None
api_url = DEFAULT_API_URL
questions_url = f'{api_url}/questions'
submit_url = f'{api_url}/submit'
# 1. Instantiate Agent (imported from agent.py)
try:
agent = create_agent()
except Exception as e: # pylint: disable=W0703
print(f"Error instantiating agent: {e}")
return f"Error initializing agent: {e}", None
# In the case of an app running as a hugging Face space, this link points toward your
# codebase (useful for others so please keep it public)
agent_code = f'https://huggingface.co/spaces/{space_id}/tree/main'
print(agent_code)
# 2. Fetch Questions
print(f'Fetching questions from: {questions_url}')
try:
response = requests.get(questions_url, timeout=15)
response.raise_for_status()
questions_data = response.json()
if not questions_data:
print('Fetched questions list is empty.')
return 'Fetched questions list is empty or invalid format.', None
print(f'Fetched {len(questions_data)} questions.')
except requests.exceptions.JSONDecodeError as e:
print(f'Error decoding JSON response from questions endpoint: {e}')
print(f'Response text: {response.text[:500]}')
return f'Error decoding server response for questions: {e}', None
except requests.exceptions.RequestException as e:
print(f'Error fetching questions: {e}')
return f'Error fetching questions: {e}', None
except Exception as e: # pylint: disable=W0703
print(f'An unexpected error occurred fetching questions: {e}')
return f'An unexpected error occurred fetching questions: {e}', None
# 3. Run your Agent
results_log = []
answers_payload = []
print(f'Running agent on {len(questions_data)} questions...')
for question_number in QUESTIONS:
item = questions_data[question_number - 1] # Adjust for zero-based index
task_id = item.get("task_id")
question_text = item.get("question")
if not task_id or question_text is None:
print(f'Skipping item with missing task_id or question: {item}')
continue
try:
submitted_answer = agent.run(
question_text
)
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer})
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": submitted_answer
})
except Exception as e: # pylint: disable=W0703
print(f'Error running agent on task {task_id}: {e}')
results_log.append({
"Task ID": task_id,
"Question": question_text,
"Submitted Answer": f"AGENT ERROR: {e}"
})
if not answers_payload:
print('Agent did not produce any answers to submit.')
return 'Agent did not produce any answers to submit.', pd.DataFrame(results_log)
# 4. Prepare Submission
submission_data = {
"username": username.strip(),
"agent_code": agent_code,
"answers": answers_payload
}
status_update = (
f'Agent finished. Submitting {len(answers_payload)} answers for user "{username}"...'
)
print(status_update)
# 5. Submit
print(f'Submitting {len(answers_payload)} answers to: {submit_url}')
try:
response = requests.post(submit_url, json=submission_data, timeout=60)
response.raise_for_status()
result_data = response.json()
final_status = (
f"Submission Successful!\n"
f"User: {result_data.get('username')}\n"
f"Overall Score: {result_data.get('score', 'N/A')}% "
f"({result_data.get('correct_count', '?')}/"
f"{result_data.get('total_attempted', '?')} correct)\n"
f"Message: {result_data.get('message', 'No message received.')}"
)
print('Submission successful.')
results_df = pd.DataFrame(results_log)
return final_status, results_df
except requests.exceptions.HTTPError as e:
error_detail = f"Server responded with status {e.response.status_code}."
try:
error_json = e.response.json()
error_detail += f" Detail: {error_json.get('detail', e.response.text)}"
except requests.exceptions.JSONDecodeError:
error_detail += f" Response: {e.response.text[:500]}"
status_message = f"Submission Failed: {error_detail}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.Timeout:
status_message = "Submission Failed: The request timed out."
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except requests.exceptions.RequestException as e:
status_message = f"Submission Failed: Network error - {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
except Exception as e: # pylint: disable=W0703
status_message = f"An unexpected error occurred during submission: {e}"
print(status_message)
results_df = pd.DataFrame(results_log)
return status_message, results_df
# --- Build Gradio Interface using Blocks ---
with gr.Blocks() as demo:
gr.Markdown("# Basic Agent Evaluation Runner")
gr.Markdown(
"""
**Instructions:**
1. Please clone this space, then modify the code to define your agent's logic,
the tools, the necessary packages, etc ...
2. Log in to your Hugging Face account using the button below. This uses your
HF username for submission.
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your
agent, submit answers, and see the score.
---
**Disclaimers:**
Once clicking on the "submit" button, it can take quite some time (this is the
time for the agent to go through all the questions).
This space provides a basic setup and is intentionally sub-optimal to encourage
you to develop your own, more robust solution. For instance, for the delay process
of the submit button, a solution could be to cache the answers and submit in a
separate action or even to answer the questions in async.
"""
)
gr.LoginButton()
run_button = gr.Button("Run Evaluation & Submit All Answers")
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False)
# Removed max_rows=10 from DataFrame constructor
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True)
run_button.click( # pylint: disable=E1101
fn=run_and_submit_all,
outputs=[status_output, results_table]
)
if __name__ == "__main__":
print("\n" + "-"*30 + " App Starting " + "-"*30)
# Check for SPACE_HOST and SPACE_ID at startup for information
space_host_startup = os.getenv("SPACE_HOST")
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup
if space_host_startup:
print(f"✅ SPACE_HOST found: {space_host_startup}")
print(f" Runtime URL should be: https://{space_host_startup}.hf.space")
else:
print("ℹ️ SPACE_HOST environment variable not found (running locally?).")
if space_id_startup: # Print repo URLs if SPACE_ID is found
print(f"✅ SPACE_ID found: {space_id_startup}")
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}")
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main")
else:
print(
"ℹ️ SPACE_ID environment variable not found (running locally?)." \
"Repo URL cannot be determined."
)
print("-"*(60 + len(" App Starting ")) + "\n")
print("Launching Gradio Interface for Basic Agent Evaluation...")
demo.launch(debug=True, share=False)