Spaces:
Sleeping
Sleeping

Updated wikipedia search tools to get and parse wikipedia pages to HTML so that tables and other non-text elements are visible to agent. Allowed agent to import BeautifulSoup.
8b358c4
verified
'''HuggingFace Agents course final project GAIA agent benchmark.''' | |
# Standard library | |
import os | |
import requests | |
# Third-party | |
import gradio as gr | |
import pandas as pd | |
# Local/Project | |
from functions.agent import create_agent | |
# --- Constants --- | |
from configuration import QUESTIONS, DEFAULT_API_URL, INSTRUCTIONS | |
def run_and_submit_all(profile: gr.OAuthProfile | None): | |
""" | |
Fetches all questions, runs the BasicAgent on them, submits all answers, | |
and displays the results. | |
""" | |
# --- Determine HF Space Runtime URL and Repo URL --- | |
space_id = os.getenv('SPACE_ID') | |
if profile: | |
username = f'{profile.username}' | |
print(f'User logged in: {username}') | |
else: | |
print('User not logged in.') | |
return 'Please Login to Hugging Face with the button.', None | |
api_url = DEFAULT_API_URL | |
questions_url = f'{api_url}/questions' | |
submit_url = f'{api_url}/submit' | |
# 1. Instantiate Agent (imported from agent.py) | |
try: | |
agent = create_agent() | |
except Exception as e: # pylint: disable=W0703 | |
print(f"Error instantiating agent: {e}") | |
return f"Error initializing agent: {e}", None | |
# In the case of an app running as a hugging Face space, this link points toward your | |
# codebase (useful for others so please keep it public) | |
agent_code = f'https://huggingface.co/spaces/{space_id}/tree/main' | |
print(agent_code) | |
# 2. Fetch Questions | |
print(f'Fetching questions from: {questions_url}') | |
try: | |
response = requests.get(questions_url, timeout=15) | |
response.raise_for_status() | |
questions_data = response.json() | |
if not questions_data: | |
print('Fetched questions list is empty.') | |
return 'Fetched questions list is empty or invalid format.', None | |
print(f'Fetched {len(questions_data)} questions.') | |
except requests.exceptions.JSONDecodeError as e: | |
print(f'Error decoding JSON response from questions endpoint: {e}') | |
print(f'Response text: {response.text[:500]}') | |
return f'Error decoding server response for questions: {e}', None | |
except requests.exceptions.RequestException as e: | |
print(f'Error fetching questions: {e}') | |
return f'Error fetching questions: {e}', None | |
except Exception as e: # pylint: disable=W0703 | |
print(f'An unexpected error occurred fetching questions: {e}') | |
return f'An unexpected error occurred fetching questions: {e}', None | |
# 3. Run your Agent | |
results_log = [] | |
answers_payload = [] | |
print(f'Running agent on {len(questions_data)} questions...') | |
for question_number in QUESTIONS: | |
item = questions_data[question_number - 1] # Adjust for zero-based index | |
task_id = item.get("task_id") | |
question_text = item.get("question") | |
if not task_id or question_text is None: | |
print(f'Skipping item with missing task_id or question: {item}') | |
continue | |
try: | |
submitted_answer = agent.run( | |
question_text | |
) | |
answers_payload.append({"task_id": task_id, "submitted_answer": submitted_answer}) | |
results_log.append({ | |
"Task ID": task_id, | |
"Question": question_text, | |
"Submitted Answer": submitted_answer | |
}) | |
except Exception as e: # pylint: disable=W0703 | |
print(f'Error running agent on task {task_id}: {e}') | |
results_log.append({ | |
"Task ID": task_id, | |
"Question": question_text, | |
"Submitted Answer": f"AGENT ERROR: {e}" | |
}) | |
if not answers_payload: | |
print('Agent did not produce any answers to submit.') | |
return 'Agent did not produce any answers to submit.', pd.DataFrame(results_log) | |
# 4. Prepare Submission | |
submission_data = { | |
"username": username.strip(), | |
"agent_code": agent_code, | |
"answers": answers_payload | |
} | |
status_update = ( | |
f'Agent finished. Submitting {len(answers_payload)} answers for user "{username}"...' | |
) | |
print(status_update) | |
# 5. Submit | |
print(f'Submitting {len(answers_payload)} answers to: {submit_url}') | |
try: | |
response = requests.post(submit_url, json=submission_data, timeout=60) | |
response.raise_for_status() | |
result_data = response.json() | |
final_status = ( | |
f"Submission Successful!\n" | |
f"User: {result_data.get('username')}\n" | |
f"Overall Score: {result_data.get('score', 'N/A')}% " | |
f"({result_data.get('correct_count', '?')}/" | |
f"{result_data.get('total_attempted', '?')} correct)\n" | |
f"Message: {result_data.get('message', 'No message received.')}" | |
) | |
print('Submission successful.') | |
results_df = pd.DataFrame(results_log) | |
return final_status, results_df | |
except requests.exceptions.HTTPError as e: | |
error_detail = f"Server responded with status {e.response.status_code}." | |
try: | |
error_json = e.response.json() | |
error_detail += f" Detail: {error_json.get('detail', e.response.text)}" | |
except requests.exceptions.JSONDecodeError: | |
error_detail += f" Response: {e.response.text[:500]}" | |
status_message = f"Submission Failed: {error_detail}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.Timeout: | |
status_message = "Submission Failed: The request timed out." | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except requests.exceptions.RequestException as e: | |
status_message = f"Submission Failed: Network error - {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
except Exception as e: # pylint: disable=W0703 | |
status_message = f"An unexpected error occurred during submission: {e}" | |
print(status_message) | |
results_df = pd.DataFrame(results_log) | |
return status_message, results_df | |
# --- Build Gradio Interface using Blocks --- | |
with gr.Blocks() as demo: | |
gr.Markdown("# Basic Agent Evaluation Runner") | |
gr.Markdown( | |
""" | |
**Instructions:** | |
1. Please clone this space, then modify the code to define your agent's logic, | |
the tools, the necessary packages, etc ... | |
2. Log in to your Hugging Face account using the button below. This uses your | |
HF username for submission. | |
3. Click 'Run Evaluation & Submit All Answers' to fetch questions, run your | |
agent, submit answers, and see the score. | |
--- | |
**Disclaimers:** | |
Once clicking on the "submit" button, it can take quite some time (this is the | |
time for the agent to go through all the questions). | |
This space provides a basic setup and is intentionally sub-optimal to encourage | |
you to develop your own, more robust solution. For instance, for the delay process | |
of the submit button, a solution could be to cache the answers and submit in a | |
separate action or even to answer the questions in async. | |
""" | |
) | |
gr.LoginButton() | |
run_button = gr.Button("Run Evaluation & Submit All Answers") | |
status_output = gr.Textbox(label="Run Status / Submission Result", lines=5, interactive=False) | |
# Removed max_rows=10 from DataFrame constructor | |
results_table = gr.DataFrame(label="Questions and Agent Answers", wrap=True) | |
run_button.click( # pylint: disable=E1101 | |
fn=run_and_submit_all, | |
outputs=[status_output, results_table] | |
) | |
if __name__ == "__main__": | |
print("\n" + "-"*30 + " App Starting " + "-"*30) | |
# Check for SPACE_HOST and SPACE_ID at startup for information | |
space_host_startup = os.getenv("SPACE_HOST") | |
space_id_startup = os.getenv("SPACE_ID") # Get SPACE_ID at startup | |
if space_host_startup: | |
print(f"✅ SPACE_HOST found: {space_host_startup}") | |
print(f" Runtime URL should be: https://{space_host_startup}.hf.space") | |
else: | |
print("ℹ️ SPACE_HOST environment variable not found (running locally?).") | |
if space_id_startup: # Print repo URLs if SPACE_ID is found | |
print(f"✅ SPACE_ID found: {space_id_startup}") | |
print(f" Repo URL: https://huggingface.co/spaces/{space_id_startup}") | |
print(f" Repo Tree URL: https://huggingface.co/spaces/{space_id_startup}/tree/main") | |
else: | |
print( | |
"ℹ️ SPACE_ID environment variable not found (running locally?)." \ | |
"Repo URL cannot be determined." | |
) | |
print("-"*(60 + len(" App Starting ")) + "\n") | |
print("Launching Gradio Interface for Basic Agent Evaluation...") | |
demo.launch(debug=True, share=False) | |