resumate / functions /linkedin_resume.py
gperdrizet's picture
Cleaned up data directory structure for intermediate results
bef6750 verified
raw
history blame
11.2 kB
"""
context_acquisition.py
Functions for acquiring context from various sources including PDF text extraction,
GitHub profiles, and job posting text.
"""
import re
import logging
import io
import os
import json
from pathlib import Path
from datetime import datetime
import PyPDF2
# pylint: disable=broad-exception-caught
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
def check_default_linkedin_pdf():
"""Check if default LinkedIn PDF exists in data directory."""
# Get the project root directory (parent of functions directory)
project_root = Path(__file__).parent.parent
default_pdf = f'{project_root}/data/linkedin_profile.pdf'
if not Path(default_pdf).exists():
logger.warning("Default LinkedIn PDF not found at %s", default_pdf)
return False, None
return True, default_pdf
def extract_text_from_linkedin_pdf(pdf_file) -> dict:
"""
Extract and structure text content from an uploaded LinkedIn resume export PDF file
for optimal LLM processing.
Args:
pdf_file: The file path string to the uploaded PDF file
Returns:
dict: Dictionary containing extraction status, structured text content, and metadata
Example:
{
"status": "success",
"structured_text": {
"sections": {...},
"full_text": "...",
"llm_formatted": "...",
"summary": "..."
},
"metadata": {...}
}
"""
if pdf_file is None:
return {"status": "error", "message": "No PDF file provided"}
try:
# Get filename from path
filename = os.path.basename(pdf_file)
# Read the PDF file from the file path
with open(pdf_file, 'rb') as file:
file_content = file.read()
file_size = len(file_content)
# Create PDF reader from the file content
pdf_reader = PyPDF2.PdfReader(io.BytesIO(file_content))
# Extract text from all pages
extracted_text = ""
num_pages = len(pdf_reader.pages)
for page_num in range(num_pages):
try:
page = pdf_reader.pages[page_num]
page_text = page.extract_text()
extracted_text += page_text + "\n\n"
except Exception as e:
logger.warning("Error extracting text from page %d: %s", page_num + 1, str(e))
continue
# Clean and structure the extracted text for LLM consumption
structured_content = _structure_resume_text(extracted_text)
if not structured_content["full_text"].strip():
return {
"status": "warning",
"structured_text": structured_content,
"metadata": {
"filename": filename,
"file_size": file_size,
"pages": num_pages
},
"message": "PDF processed but no text content was extracted"
}
logger.info(
"Successfully extracted and structured %d characters from %s",
len(structured_content['full_text']),
filename
)
result = {
"status": "success",
"structured_text": structured_content,
"metadata": {
"filename": filename,
"file_size": file_size,
"pages": num_pages,
"sections_found": list(structured_content["sections"].keys())
},
"message": f"Text extracted and structured successfully from {num_pages} pages"
}
# Save results to JSON file
try:
linkedin_profile_dir = Path(__file__).parent.parent / "data" / "linkedin_profile"
linkedin_profile_dir.mkdir(parents=True, exist_ok=True)
# Create timestamped filename
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
output_file = linkedin_profile_dir / f"linkedin_resume_{timestamp}.json"
with open(output_file, 'w', encoding='utf-8') as f:
json.dump(result, f, indent=2, ensure_ascii=False)
logger.info("LinkedIn resume extraction saved to %s", output_file)
except Exception as save_error:
logger.warning("Failed to save LinkedIn resume extraction to file: %s", str(save_error))
return result
except Exception as e:
logger.error("Error processing PDF file: %s", str(e))
return {
"status": "error",
"message": f"Failed to extract text from PDF: {str(e)}"
}
def _structure_resume_text(text: str) -> dict:
"""
Structure resume text into logical sections for optimal LLM processing.
Args:
text (str): Raw extracted text from PDF
Returns:
dict: Structured text with sections, full text, and summary
"""
if not text:
return {
"sections": {},
"full_text": "",
"llm_formatted": "",
"summary": "",
"format": "structured_resume",
"word_count": 0,
"section_count": 0
}
# Clean the text first
cleaned_text = _clean_extracted_text(text)
# Define section patterns (common LinkedIn export sections)
section_patterns = {
"contact_info": r"(?i)(contact|personal|profile)\s*(?:information)?",
"summary": r"(?i)(summary|about|overview|profile)",
"experience": r"(?i)(experience|work|employment|professional)",
"education": r"(?i)(education|academic|university|college|school)",
"skills": r"(?i)(skills|competencies|technologies|technical)",
"certifications": r"(?i)(certification|certificate|license)",
}
# Split text into lines for processing
lines = cleaned_text.split('\n')
sections = {}
current_section = "general"
current_content = []
for line in lines:
line = line.strip()
if not line:
continue
# Check if line is a section header
section_found = None
for section_name, pattern in section_patterns.items():
if re.match(pattern, line):
section_found = section_name
break
if section_found:
# Save previous section content
if current_content:
sections[current_section] = '\n'.join(current_content)
# Start new section
current_section = section_found
current_content = [line]
else:
current_content.append(line)
# Save the last section
if current_content:
sections[current_section] = '\n'.join(current_content)
# Create a structured summary for LLM context
summary_parts = []
if "contact_info" in sections:
summary_parts.append(f"CONTACT: {sections['contact_info'][:200]}...")
if "summary" in sections:
summary_parts.append(f"SUMMARY: {sections['summary']}")
if "experience" in sections:
summary_parts.append(f"EXPERIENCE: {sections['experience'][:300]}...")
if "education" in sections:
summary_parts.append(f"EDUCATION: {sections['education']}")
if "skills" in sections:
summary_parts.append(f"SKILLS: {sections['skills']}")
# Create LLM-optimized format
llm_formatted_text = _format_for_llm(sections)
return {
"sections": sections,
"full_text": cleaned_text,
"llm_formatted": llm_formatted_text,
"summary": '\n\n'.join(summary_parts),
"format": "structured_resume",
"word_count": len(cleaned_text.split()),
"section_count": len(sections)
}
def _format_for_llm(sections: dict) -> str:
"""
Format the resume sections in an optimal way for LLM processing.
Args:
sections (dict): Structured sections
full_text (str): Full cleaned text
Returns:
str: LLM-optimized formatted text
"""
formatted_parts = ["=== RESUME CONTENT ===\n"]
# Prioritize sections in logical order for LLM
priority_order = ["summary", "contact_info", "experience", "education", "skills",
"certifications", "projects", "achievements", "languages", "volunteer"]
# Add prioritized sections
for section_name in priority_order:
if section_name in sections:
formatted_parts.append(f"[{section_name.upper().replace('_', ' ')}]")
formatted_parts.append(sections[section_name])
formatted_parts.append("") # Empty line between sections
# Add any remaining sections
for section_name, content in sections.items():
if section_name not in priority_order and section_name != "general":
formatted_parts.append(f"[{section_name.upper().replace('_', ' ')}]")
formatted_parts.append(content)
formatted_parts.append("")
# Add general content if exists
if "general" in sections:
formatted_parts.append("[ADDITIONAL INFORMATION]")
formatted_parts.append(sections["general"])
formatted_parts.append("\n=== END RESUME ===")
return '\n'.join(formatted_parts)
def _clean_extracted_text(text: str) -> str:
"""
Clean and normalize extracted text from PDF for better LLM processing.
Args:
text (str): Raw extracted text
Returns:
str: Cleaned text optimized for LLM consumption
"""
if not text:
return ""
# Remove excessive whitespace and normalize line endings
text = re.sub(r'\r\n', '\n', text)
text = re.sub(r'\r', '\n', text)
# Split into lines and clean each line
lines = text.split('\n')
cleaned_lines = []
for line in lines:
# Strip whitespace
cleaned_line = line.strip()
# Skip empty lines and very short lines (likely artifacts)
if len(cleaned_line) < 2:
continue
# Remove common PDF artifacts
cleaned_line = re.sub(r'^\d+$', '', cleaned_line) # Page numbers
cleaned_line = re.sub(r'^[|\-_=]+$', '', cleaned_line) # Separator lines
if cleaned_line:
cleaned_lines.append(cleaned_line)
# Join lines and normalize spacing
cleaned_text = '\n'.join(cleaned_lines)
# Normalize multiple spaces to single spaces
cleaned_text = re.sub(r' +', ' ', cleaned_text)
# Normalize multiple newlines to maximum of 2
cleaned_text = re.sub(r'\n{3,}', '\n\n', cleaned_text)
return cleaned_text.strip()
def get_llm_context_from_resume(extraction_result: dict) -> str:
"""
Extract the best formatted text for LLM context from the extraction result.
Args:
extraction_result (dict): Result from extract_text_from_linkedin_pdf
Returns:
str: Formatted text ready for LLM context
"""
if extraction_result.get("status") != "success":
return ""
structured_text = extraction_result.get("structured_text", {})
# Return the LLM-formatted version if available, otherwise fall back to full text
return structured_text.get("llm_formatted", structured_text.get("full_text", ""))