Spaces:
Configuration error
Configuration error
File size: 7,498 Bytes
d5a003e 1084ca5 f5b66ec 1084ca5 f9a80bc 1084ca5 f9a80bc 1084ca5 f9a80bc 1084ca5 f9a80bc 1084ca5 f9a80bc 1084ca5 f9a80bc 1084ca5 f9a80bc 1084ca5 f9a80bc 1084ca5 f9a80bc 1084ca5 f9a80bc 1084ca5 f9a80bc 1084ca5 f9a80bc 1084ca5 f9a80bc 1084ca5 f9a80bc 1084ca5 f9a80bc 1084ca5 f9a80bc 1084ca5 f9a80bc 1084ca5 f9a80bc 1084ca5 f9a80bc 1084ca5 f9a80bc 1084ca5 f9a80bc 1084ca5 f9a80bc 1084ca5 f9a80bc 1084ca5 f9a80bc 1084ca5 f9a80bc 1084ca5 f9a80bc 1084ca5 f9a80bc 1084ca5 f9a80bc 1084ca5 f9a80bc 1084ca5 f9a80bc 1084ca5 f9a80bc 1084ca5 f9a80bc 1084ca5 f9a80bc 1084ca5 f9a80bc 1084ca5 f9a80bc 1084ca5 f9a80bc 1084ca5 f9a80bc 1084ca5 f9a80bc 1084ca5 f9a80bc 1084ca5 f9a80bc 1084ca5 f9a80bc 1084ca5 f9a80bc 1084ca5 f9a80bc 1084ca5 f9a80bc 1084ca5 f9a80bc 1084ca5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
"""
Unit tests for the context_acquisition module.
"""
import unittest
import tempfile
import os
from unittest.mock import patch, MagicMock
from functions import linkedin_resume as ca
# pylint: disable=protected-access
class TestCleanExtractedText(unittest.TestCase):
"""Test cases for the _clean_extracted_text function."""
def test_normalize_multiple_newlines(self):
"""Test normalization of multiple newlines."""
raw = "Line 1\n\nLine 2\n\n\nLine 3"
expected = "Line 1\nLine 2\nLine 3"
self.assertEqual(ca._clean_extracted_text(raw), expected)
def test_remove_artifacts(self):
"""Test removal of PDF artifacts."""
raw = " 123 \n|---|\nSome text\n"
expected = "Some text"
self.assertEqual(ca._clean_extracted_text(raw), expected)
def test_normalize_spaces(self):
"""Test normalization of multiple spaces."""
raw = "A B C"
expected = "A B C"
self.assertEqual(ca._clean_extracted_text(raw), expected)
def test_empty_string(self):
"""Test handling of empty string."""
self.assertEqual(ca._clean_extracted_text(""), "")
def test_none_input(self):
"""Test handling of None input."""
self.assertEqual(ca._clean_extracted_text(None), "")
class TestStructureResumeText(unittest.TestCase):
"""Test cases for the _structure_resume_text function."""
def test_basic_structure(self):
"""Test basic resume text structuring."""
text = "Contact Info\nJohn Doe\nSummary\nExperienced dev" + \
"\nExperience\nCompany X\nEducation\nMIT\nSkills\nPython, C++"
result = ca._structure_resume_text(text)
self.assertIn("contact_info", result["sections"])
self.assertIn("summary", result["sections"])
self.assertIn("experience", result["sections"])
self.assertIn("education", result["sections"])
self.assertIn("skills", result["sections"])
self.assertGreater(result["word_count"], 0)
self.assertGreaterEqual(result["section_count"], 5)
def test_empty_text(self):
"""Test handling of empty text."""
result = ca._structure_resume_text("")
self.assertEqual(result["sections"], {})
self.assertEqual(result["full_text"], "")
self.assertEqual(result["word_count"], 0)
self.assertEqual(result["section_count"], 0)
def test_contains_required_fields(self):
"""Test that result contains all required fields."""
text = "Some basic text"
result = ca._structure_resume_text(text)
required_fields = ["sections", "full_text", "llm_formatted", "summary",
"format", "word_count", "section_count"]
for field in required_fields:
self.assertIn(field, result)
class TestFormatForLLM(unittest.TestCase):
"""Test cases for the _format_for_llm function."""
def test_section_formatting(self):
"""Test proper formatting of sections for LLM."""
sections = {
"summary": "A summary.",
"contact_info": "Contact details.",
"experience": "Work exp.",
"education": "School info.",
"skills": "Python, C++"
}
formatted = ca._format_for_llm(sections)
self.assertIn("[SUMMARY]", formatted)
self.assertIn("[CONTACT INFO]", formatted)
self.assertIn("[EXPERIENCE]", formatted)
self.assertIn("[EDUCATION]", formatted)
self.assertIn("[SKILLS]", formatted)
self.assertTrue(formatted.startswith("=== RESUME CONTENT ==="))
self.assertTrue(formatted.endswith("=== END RESUME ==="))
def test_empty_sections(self):
"""Test handling of empty sections."""
sections = {}
formatted = ca._format_for_llm(sections)
self.assertTrue(formatted.startswith("=== RESUME CONTENT ==="))
self.assertTrue(formatted.endswith("=== END RESUME ==="))
class TestGetLLMContextFromResume(unittest.TestCase):
"""Test cases for the get_llm_context_from_resume function."""
def test_success_with_llm_formatted(self):
"""Test successful extraction with LLM formatted text."""
extraction_result = {
"status": "success",
"structured_text": {"llm_formatted": "LLM text", "full_text": "Full text"}
}
result = ca.get_llm_context_from_resume(extraction_result)
self.assertEqual(result, "LLM text")
def test_fallback_to_full_text(self):
"""Test fallback to full text when LLM formatted not available."""
extraction_result = {
"status": "success",
"structured_text": {"full_text": "Full text"}
}
result = ca.get_llm_context_from_resume(extraction_result)
self.assertEqual(result, "Full text")
def test_error_status(self):
"""Test handling of error status."""
extraction_result = {"status": "error"}
result = ca.get_llm_context_from_resume(extraction_result)
self.assertEqual(result, "")
def test_missing_structured_text(self):
"""Test handling of missing structured_text."""
extraction_result = {"status": "success"}
result = ca.get_llm_context_from_resume(extraction_result)
self.assertEqual(result, "")
class TestExtractTextFromLinkedInPDF(unittest.TestCase):
"""Test cases for the extract_text_from_linkedin_pdf function."""
def test_none_input(self):
"""Test handling of None input."""
result = ca.extract_text_from_linkedin_pdf(None)
self.assertEqual(result["status"], "error")
self.assertIn("No PDF file provided", result["message"])
@patch('PyPDF2.PdfReader')
@patch('builtins.open')
def test_successful_extraction(self, mock_open, mock_pdf_reader):
"""Test successful PDF text extraction with mocked PyPDF2."""
# Create a temporary file
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp:
tmp_path = tmp.name
try:
# Mock file reading
mock_file = MagicMock()
mock_file.read.return_value = b"fake pdf content"
mock_open.return_value.__enter__.return_value = mock_file
# Mock PDF reader and page
mock_page = MagicMock()
mock_page.extract_text.return_value = "Contact Info\nJohn Doe\nSummary" + \
"\nDeveloper\nExperience\nCompany X"
mock_reader_instance = MagicMock()
mock_reader_instance.pages = [mock_page]
mock_pdf_reader.return_value = mock_reader_instance
# Test the function
result = ca.extract_text_from_linkedin_pdf(tmp_path)
self.assertEqual(result["status"], "success")
self.assertIn("structured_text", result)
self.assertIn("metadata", result)
self.assertIn("contact_info", result["structured_text"]["sections"])
finally:
# Clean up
if os.path.exists(tmp_path):
os.remove(tmp_path)
def test_nonexistent_file(self):
"""Test handling of non-existent file."""
result = ca.extract_text_from_linkedin_pdf("/nonexistent/path.pdf")
self.assertEqual(result["status"], "error")
self.assertIn("Failed to extract text from PDF", result["message"])
if __name__ == '__main__':
unittest.main()
|