Spaces:
Sleeping
Sleeping
Upload 3 files
Browse files- app.py +195 -169
- config.json +2 -2
- main.py +25 -56
app.py
CHANGED
|
@@ -1,181 +1,207 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import
|
| 3 |
-
import
|
| 4 |
-
import
|
| 5 |
-
from
|
| 6 |
-
from
|
| 7 |
-
from
|
| 8 |
-
from
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
class LogHandler(logging.Handler):
|
| 22 |
-
def emit(self, record):
|
| 23 |
-
log_entry = self.format(record)
|
| 24 |
-
logs.append(log_entry)
|
| 25 |
-
|
| 26 |
-
# Add custom log handler to the logger
|
| 27 |
-
log_handler = LogHandler()
|
| 28 |
-
log_handler.setFormatter(logging.Formatter('%(asctime)s - %(message)s'))
|
| 29 |
-
logger.addHandler(log_handler)
|
| 30 |
-
|
| 31 |
-
def log_updater():
|
| 32 |
-
"""Background function to add logs."""
|
| 33 |
-
while True:
|
| 34 |
-
time.sleep(2) # Update logs every 2 seconds
|
| 35 |
-
pass # Log capture is now handled by the logging system
|
| 36 |
-
|
| 37 |
-
def get_logs():
|
| 38 |
-
"""Retrieve logs for display."""
|
| 39 |
-
return "\n".join(logs[-50:]) # Only show the last 50 logs for example
|
| 40 |
-
|
| 41 |
-
# Start the logging thread
|
| 42 |
-
threading.Thread(target=log_updater, daemon=True).start()
|
| 43 |
-
|
| 44 |
-
def answer_question(query, state):
|
| 45 |
-
try:
|
| 46 |
-
# Generate response using the passed objects
|
| 47 |
-
response, source_docs = retrieve_and_generate_response(config.gen_llm, config.vector_store, query)
|
| 48 |
-
|
| 49 |
-
# Update state with the response and source documents
|
| 50 |
-
state["query"] = query
|
| 51 |
-
state["response"] = response
|
| 52 |
-
state["source_docs"] = source_docs
|
| 53 |
-
|
| 54 |
-
response_text = f"Response: {response}\n\n"
|
| 55 |
-
return response_text, state
|
| 56 |
-
except Exception as e:
|
| 57 |
-
logging.error(f"Error processing query: {e}")
|
| 58 |
-
return f"An error occurred: {e}", state
|
| 59 |
-
|
| 60 |
-
def compute_metrics(state):
|
| 61 |
-
try:
|
| 62 |
-
logging.info(f"Computing metrics")
|
| 63 |
-
|
| 64 |
-
# Retrieve response and source documents from state
|
| 65 |
-
response = state.get("response", "")
|
| 66 |
-
source_docs = state.get("source_docs", {})
|
| 67 |
-
query = state.get("query", "")
|
| 68 |
-
|
| 69 |
-
# Generate metrics using the passed objects
|
| 70 |
-
attributes, metrics = generate_metrics(config.val_llm, response, source_docs, query, 1)
|
| 71 |
-
|
| 72 |
-
attributes_text = get_attributes_text(attributes)
|
| 73 |
-
|
| 74 |
-
metrics_text = "Metrics:\n"
|
| 75 |
-
for key, value in metrics.items():
|
| 76 |
-
if key != 'response':
|
| 77 |
-
metrics_text += f"{key}: {value}\n"
|
| 78 |
-
|
| 79 |
-
return attributes_text, metrics_text
|
| 80 |
-
except Exception as e:
|
| 81 |
-
logging.error(f"Error computing metrics: {e}")
|
| 82 |
-
return f"An error occurred: {e}", ""
|
| 83 |
-
|
| 84 |
-
def reinitialize_gen_llm(gen_llm_name):
|
| 85 |
-
"""Reinitialize the generation LLM and return updated model info."""
|
| 86 |
-
if gen_llm_name.strip(): # Only update if input is not empty
|
| 87 |
-
config.gen_llm = initialize_generation_llm(gen_llm_name)
|
| 88 |
-
|
| 89 |
-
# Return updated model information
|
| 90 |
-
updated_model_info = (
|
| 91 |
-
f"Embedding Model: {ConfigConstants.EMBEDDING_MODEL_NAME}\n"
|
| 92 |
-
f"Generation LLM: {config.gen_llm.name if hasattr(config.gen_llm, 'name') else 'Unknown'}\n"
|
| 93 |
-
f"Validation LLM: {config.val_llm.name if hasattr(config.val_llm, 'name') else 'Unknown'}\n"
|
| 94 |
-
)
|
| 95 |
-
return updated_model_info
|
| 96 |
-
|
| 97 |
-
def reinitialize_val_llm(val_llm_name):
|
| 98 |
-
"""Reinitialize the generation LLM and return updated model info."""
|
| 99 |
-
if val_llm_name.strip(): # Only update if input is not empty
|
| 100 |
-
config.val_llm = initialize_validation_llm(val_llm_name)
|
| 101 |
-
|
| 102 |
-
# Return updated model information
|
| 103 |
-
updated_model_info = (
|
| 104 |
-
f"Embedding Model: {ConfigConstants.EMBEDDING_MODEL_NAME}\n"
|
| 105 |
-
f"Generation LLM: {config.gen_llm.name if hasattr(config.gen_llm, 'name') else 'Unknown'}\n"
|
| 106 |
-
f"Validation LLM: {config.val_llm.name if hasattr(config.val_llm, 'name') else 'Unknown'}\n"
|
| 107 |
-
)
|
| 108 |
-
return updated_model_info
|
| 109 |
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
with gr.Row():
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
with gr.Row():
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
# State to store response and source documents
|
| 130 |
-
state = gr.State(value={"query": "","response": "", "source_docs": {}})
|
| 131 |
-
gr.Markdown("Ask a question and get a response with metrics calculated from the RAG pipeline.") # Description
|
| 132 |
with gr.Row():
|
| 133 |
-
|
|
|
|
|
|
|
| 134 |
with gr.Row():
|
| 135 |
-
|
| 136 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
with gr.Row():
|
| 138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
#
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
)
|
| 153 |
-
clear_query_button.click(fn=lambda: "", outputs=[query_input]) # Clear query input
|
| 154 |
-
compute_metrics_button.click(
|
| 155 |
-
fn=compute_metrics,
|
| 156 |
-
inputs=[state],
|
| 157 |
-
outputs=[attr_output, metrics_output]
|
| 158 |
-
)
|
| 159 |
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
update_val_llm_button.click(
|
| 167 |
-
fn=reinitialize_val_llm,
|
| 168 |
-
inputs=[new_val_llm_input],
|
| 169 |
-
outputs=[model_info_display] # Update the displayed model info
|
| 170 |
-
)
|
| 171 |
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
|
|
|
|
|
|
|
|
|
| 177 |
|
| 178 |
-
|
| 179 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
|
| 181 |
-
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import os
|
| 3 |
+
import json
|
| 4 |
+
import pandas as pd
|
| 5 |
+
from scripts.evaluate_information_integration import evaluate_information_integration
|
| 6 |
+
from scripts.evaluate_negative_rejection import evaluate_negative_rejection
|
| 7 |
+
from scripts.helper import update_config
|
| 8 |
+
from scripts.evaluate_noise_robustness import evaluate_noise_robustness
|
| 9 |
+
from scripts.evaluate_factual_robustness import evaluate_factual_robustness
|
| 10 |
+
|
| 11 |
+
# Path to score files
|
| 12 |
+
Noise_Robustness_DIR = "results/Noise Robustness/"
|
| 13 |
+
Negative_Rejection_DIR = "results/Negative Rejection/"
|
| 14 |
+
Counterfactual_Robustness_DIR = "results/Counterfactual Robustness/"
|
| 15 |
+
Infomration_Integration_DIR = "results/Information Integration/"
|
| 16 |
+
|
| 17 |
+
# Function to read and aggregate score data
|
| 18 |
+
def load_scores(file_dir):
|
| 19 |
+
models = set()
|
| 20 |
+
noise_rates = set()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
+
if not os.path.exists(file_dir):
|
| 23 |
+
return pd.DataFrame(columns=["Noise Ratio"])
|
| 24 |
+
|
| 25 |
+
score_data = {}
|
| 26 |
+
|
| 27 |
+
# Read all JSON score files
|
| 28 |
+
for filename in os.listdir(file_dir):
|
| 29 |
+
if filename.startswith("scores_") and filename.endswith(".json"):
|
| 30 |
+
filepath = os.path.join(file_dir, filename)
|
| 31 |
+
with open(filepath, "r") as f:
|
| 32 |
+
score = json.load(f)
|
| 33 |
+
model = score["model"]
|
| 34 |
+
noise_rate = str(score['noise_rate'])
|
| 35 |
+
|
| 36 |
+
models.add(model)
|
| 37 |
+
noise_rates.add(noise_rate)
|
| 38 |
+
|
| 39 |
+
score_data[(model, noise_rate)] = score["accuracy"]
|
| 40 |
+
|
| 41 |
+
# Convert to DataFrame
|
| 42 |
+
df = pd.DataFrame([
|
| 43 |
+
{
|
| 44 |
+
"Noise Ratio": model,
|
| 45 |
+
**{
|
| 46 |
+
rate: f"{score_data.get((model, rate), 'N/A') * 100:.2f}"
|
| 47 |
+
if score_data.get((model, rate), "N/A") != "N/A"
|
| 48 |
+
else "N/A"
|
| 49 |
+
for rate in sorted(noise_rates, key=float)
|
| 50 |
+
}
|
| 51 |
+
}
|
| 52 |
+
for model in sorted(models)
|
| 53 |
+
])
|
| 54 |
+
|
| 55 |
+
return df
|
| 56 |
+
|
| 57 |
+
# Function to load Negative Rejection scores (Only for Noise Rate = 1.0)
|
| 58 |
+
def load_negative_rejection_scores():
|
| 59 |
+
if not os.path.exists(Negative_Rejection_DIR):
|
| 60 |
+
return pd.DataFrame()
|
| 61 |
+
|
| 62 |
+
score_data = {}
|
| 63 |
+
models = set()
|
| 64 |
+
|
| 65 |
+
for filename in os.listdir(Negative_Rejection_DIR):
|
| 66 |
+
if filename.startswith("scores_") and filename.endswith(".json") and "_noise_1.0_" in filename:
|
| 67 |
+
filepath = os.path.join(Negative_Rejection_DIR, filename)
|
| 68 |
+
with open(filepath, "r") as f:
|
| 69 |
+
score = json.load(f)
|
| 70 |
+
model = filename.split("_")[1] # Extract model name
|
| 71 |
+
models.add(model)
|
| 72 |
+
score_data[model] = score.get("reject_rate", "N/A")
|
| 73 |
+
|
| 74 |
+
df = pd.DataFrame([
|
| 75 |
+
{"Model": model, "Rejection Rate": f"{score_data.get(model, 'N/A') * 100:.2f}%"
|
| 76 |
+
if score_data.get(model, "N/A") != "N/A"
|
| 77 |
+
else "N/A"}
|
| 78 |
+
for model in sorted(models)
|
| 79 |
+
])
|
| 80 |
+
|
| 81 |
+
return df if not df.empty else pd.DataFrame(columns=["Model", "Rejection Rate"])
|
| 82 |
+
|
| 83 |
+
def load_counterfactual_robustness_scores():
|
| 84 |
+
models = set()
|
| 85 |
+
|
| 86 |
+
if not os.path.exists(Counterfactual_Robustness_DIR):
|
| 87 |
+
return pd.DataFrame(columns=["Noise Ratio"])
|
| 88 |
+
|
| 89 |
+
score_data = {}
|
| 90 |
+
|
| 91 |
+
# Read all JSON score files
|
| 92 |
+
for filename in os.listdir(Counterfactual_Robustness_DIR):
|
| 93 |
+
if filename.startswith("scores_") and filename.endswith(".json"):
|
| 94 |
+
filepath = os.path.join(Counterfactual_Robustness_DIR, filename)
|
| 95 |
+
with open(filepath, "r") as f:
|
| 96 |
+
score = json.load(f)
|
| 97 |
+
model = filename.split("_")[1]
|
| 98 |
+
models.add(model)
|
| 99 |
+
score_data[model] = {
|
| 100 |
+
"Accuracy (%)": int(score["all_rate"] * 100), # No decimal
|
| 101 |
+
"Error Detection Rate": int(score["reject_rate"] * 10),
|
| 102 |
+
"Correction Rate (%)": round(score["correct_rate"] * 100, 2) # 2 decimal places
|
| 103 |
+
}
|
| 104 |
+
|
| 105 |
+
# Convert to DataFrame
|
| 106 |
+
df = pd.DataFrame([
|
| 107 |
+
{
|
| 108 |
+
"Model": model,
|
| 109 |
+
"Accuracy (%)": score_data.get(model, {}).get("Accuracy (%)", "N/A"),
|
| 110 |
+
"Error Detection Rate": score_data.get(model, {}).get("Error Detection Rate", "N/A"),
|
| 111 |
+
"Correction Rate (%)": f"{score_data.get(model, {}).get('Correction Rate (%)', 'N/A'):.2f}"
|
| 112 |
+
}
|
| 113 |
+
for model in sorted(models)
|
| 114 |
+
])
|
| 115 |
+
|
| 116 |
+
return df
|
| 117 |
+
|
| 118 |
+
# Gradio UI
|
| 119 |
+
def launch_gradio_app(config):
|
| 120 |
+
with gr.Blocks() as app:
|
| 121 |
+
app.title = "RAG System Evaluation"
|
| 122 |
+
gr.Markdown("# RAG System Evaluation on RGB Dataset")
|
| 123 |
+
|
| 124 |
+
# Top Section - Inputs and Controls
|
| 125 |
with gr.Row():
|
| 126 |
+
model_name_input = gr.Dropdown(
|
| 127 |
+
label="Model Name",
|
| 128 |
+
choices= config["models"],
|
| 129 |
+
value="llama3-8b-8192",
|
| 130 |
+
interactive=True
|
| 131 |
+
)
|
| 132 |
+
noise_rate_input = gr.Slider(label="Noise Rate", minimum=0, maximum=1.0, step=0.2, value=0.2, interactive=True)
|
| 133 |
+
num_queries_input = gr.Number(label="Number of Queries", value=50, interactive=True)
|
| 134 |
+
|
| 135 |
+
# Bottom Section - Action Buttons
|
| 136 |
with gr.Row():
|
| 137 |
+
recalculate_noise_btn = gr.Button("Evaluate Noise Robustness")
|
| 138 |
+
recalculate_negative_btn = gr.Button("Evaluate Negative Rejection")
|
| 139 |
+
recalculate_counterfactual_btn = gr.Button("Evaluate Counterfactual Robustness")
|
| 140 |
+
recalculate_integration_btn = gr.Button("Evaluate Integration Information")
|
| 141 |
+
|
|
|
|
|
|
|
|
|
|
| 142 |
with gr.Row():
|
| 143 |
+
refresh_btn = gr.Button("Refresh", variant="primary", scale = 0)
|
| 144 |
+
|
| 145 |
+
# Middle Section - Data Tables
|
| 146 |
with gr.Row():
|
| 147 |
+
with gr.Column():
|
| 148 |
+
gr.Markdown("### 📊 Noise Robustness\n**Description:** The experimental result of noise robustness measured by accuracy (%) under different noise ratios. Result show that the increasing noise rate poses a challenge for RAG in LLMs.")
|
| 149 |
+
noise_table = gr.Dataframe(value=load_scores(Noise_Robustness_DIR), interactive=False)
|
| 150 |
+
with gr.Column():
|
| 151 |
+
gr.Markdown("### 🚫 Negative Rejection\n**Description:** This measures the model's ability to reject invalid or nonsensical queries instead of generating incorrect responses. A higher rejection rate means the model is better at filtering unreliable inputs.")
|
| 152 |
+
rejection_table = gr.Dataframe(value=load_negative_rejection_scores(), interactive=False)
|
| 153 |
+
|
| 154 |
with gr.Row():
|
| 155 |
+
with gr.Column():
|
| 156 |
+
gr.Markdown("""
|
| 157 |
+
### 🔄 Counterfactual Robustness
|
| 158 |
+
**Description:**
|
| 159 |
+
Counterfactual Robustness evaluates a model's ability to handle **errors in external knowledge** while ensuring reliable responses.
|
| 160 |
+
|
| 161 |
+
**Key Metrics in this Report:**
|
| 162 |
+
- **Accuracy (%)** → Measures the accuracy (%) of LLMs with counterfactual documents.
|
| 163 |
+
- **Error Detection Rate (%)** → Measures how often the model **rejects** incorrect or misleading queries instead of responding.
|
| 164 |
+
- **Correct Rate (%)** → Measures how often the model provides accurate responses despite **potential misinformation**.
|
| 165 |
+
""")
|
| 166 |
+
counter_factual_table = gr.Dataframe(value=load_counterfactual_robustness_scores(), interactive=False)
|
| 167 |
+
with gr.Column():
|
| 168 |
+
gr.Markdown("### 🧠 Information Integration\n**Description:** The experimental result of information integration measured by accuracy (%) under different noise ratios. The result show that information integration poses a challenge for RAG in LLMs")
|
| 169 |
+
integration_table = gr.Dataframe(value=load_scores(Infomration_Integration_DIR), interactive=False)
|
| 170 |
|
| 171 |
+
|
| 172 |
+
# Refresh Scores Function
|
| 173 |
+
def refresh_scores():
|
| 174 |
+
return load_scores(Noise_Robustness_DIR), load_negative_rejection_scores(), load_counterfactual_robustness_scores(), load_scores(Infomration_Integration_DIR)
|
| 175 |
+
|
| 176 |
+
refresh_btn.click(refresh_scores, outputs=[noise_table, rejection_table, counter_factual_table, integration_table])
|
| 177 |
+
|
| 178 |
+
# Button Functions
|
| 179 |
+
def recalculate_noise_robustness(model_name, noise_rate, num_queries):
|
| 180 |
+
update_config(config, model_name, noise_rate, num_queries)
|
| 181 |
+
evaluate_noise_robustness(config)
|
| 182 |
+
return load_scores(Noise_Robustness_DIR)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 183 |
|
| 184 |
+
recalculate_noise_btn.click(recalculate_noise_robustness, inputs=[model_name_input, noise_rate_input, num_queries_input], outputs=[noise_table])
|
| 185 |
+
|
| 186 |
+
def recalculate_counterfactual_robustness(model_name, noise_rate, num_queries):
|
| 187 |
+
update_config(config, model_name, noise_rate, num_queries)
|
| 188 |
+
evaluate_factual_robustness(config)
|
| 189 |
+
return load_counterfactual_robustness_scores()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 190 |
|
| 191 |
+
recalculate_counterfactual_btn.click(recalculate_counterfactual_robustness, inputs=[model_name_input, noise_rate_input, num_queries_input], outputs=[counter_factual_table])
|
| 192 |
+
|
| 193 |
+
def recalculate_negative_rejection(model_name, noise_rate, num_queries):
|
| 194 |
+
update_config(config, model_name, noise_rate, num_queries)
|
| 195 |
+
evaluate_negative_rejection(config)
|
| 196 |
+
return load_negative_rejection_scores()
|
| 197 |
+
|
| 198 |
+
recalculate_negative_btn.click(recalculate_negative_rejection, inputs=[model_name_input, noise_rate_input, num_queries_input], outputs=[rejection_table])
|
| 199 |
|
| 200 |
+
def recalculate_integration_info(model_name, noise_rate, num_queries):
|
| 201 |
+
update_config(config, model_name, noise_rate, num_queries)
|
| 202 |
+
evaluate_information_integration(config)
|
| 203 |
+
return load_scores(Infomration_Integration_DIR)
|
| 204 |
+
|
| 205 |
+
recalculate_integration_btn.click(recalculate_integration_info , inputs=[model_name_input, noise_rate_input, num_queries_input], outputs=[integration_table])
|
| 206 |
|
| 207 |
+
app.launch()
|
config.json
CHANGED
|
@@ -3,11 +3,11 @@
|
|
| 3 |
"factual_file_name":"en_fact.json",
|
| 4 |
"integration_file_name":"en_int.json",
|
| 5 |
"result_path": "results/",
|
| 6 |
-
"models": ["llama3-8b-8192","qwen-2.5-32b", "mixtral-8x7b-32768", "gemma2-9b-it", "deepseek-r1-distill-llama-70b" ],
|
| 7 |
"model_name":"gemma2-9b-it",
|
| 8 |
"noise_rate": 0.4,
|
| 9 |
"passage_num": 5,
|
| 10 |
-
"num_queries":
|
| 11 |
"retry_attempts": 3,
|
| 12 |
"timeout_limit": 60
|
| 13 |
}
|
|
|
|
| 3 |
"factual_file_name":"en_fact.json",
|
| 4 |
"integration_file_name":"en_int.json",
|
| 5 |
"result_path": "results/",
|
| 6 |
+
"models": ["llama3-8b-8192", "qwen-2.5-32b", "mixtral-8x7b-32768", "gemma2-9b-it", "deepseek-r1-distill-llama-70b" ],
|
| 7 |
"model_name":"gemma2-9b-it",
|
| 8 |
"noise_rate": 0.4,
|
| 9 |
"passage_num": 5,
|
| 10 |
+
"num_queries": 50,
|
| 11 |
"retry_attempts": 3,
|
| 12 |
"timeout_limit": 60
|
| 13 |
}
|
main.py
CHANGED
|
@@ -1,64 +1,33 @@
|
|
|
|
|
| 1 |
import logging
|
| 2 |
-
from
|
| 3 |
-
from
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
from
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
logging.
|
|
|
|
| 13 |
|
| 14 |
def main():
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
# Dictionary to store chunked documents
|
| 18 |
-
all_chunked_documents = []
|
| 19 |
-
datasets = {}
|
| 20 |
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
# Chunk documents
|
| 32 |
-
chunked_documents = chunk_documents(datasets[data_set_name], chunk_size=chunk_size, chunk_overlap=ConfigConstants.CHUNK_OVERLAP)
|
| 33 |
-
all_chunked_documents.extend(chunked_documents) # Combine all chunks
|
| 34 |
|
| 35 |
-
|
| 36 |
-
#for name, dataset in datasets.items():
|
| 37 |
-
#logging.info(f"Loaded {name} with {dataset.num_rows} rows")
|
| 38 |
-
|
| 39 |
-
# Logging final count
|
| 40 |
-
logging.info(f"Total chunked documents: {len(all_chunked_documents)}")
|
| 41 |
|
| 42 |
-
# Embed the documents
|
| 43 |
-
vector_store = embed_documents(all_chunked_documents)
|
| 44 |
-
logging.info("Documents embedded")
|
| 45 |
-
|
| 46 |
-
# Initialize the Generation LLM
|
| 47 |
-
gen_llm = initialize_generation_llm(ConfigConstants.GENERATION_MODEL_NAME)
|
| 48 |
-
|
| 49 |
-
# Initialize the Validation LLM
|
| 50 |
-
val_llm = initialize_validation_llm(ConfigConstants.VALIDATION_MODEL_NAME)
|
| 51 |
-
|
| 52 |
-
#Compute RMSE and AUC-ROC for entire dataset
|
| 53 |
-
#Enable below code for calculation
|
| 54 |
-
#data_set_name = 'covidqa'
|
| 55 |
-
#compute_rmse_auc_roc_metrics(gen_llm, val_llm, datasets[data_set_name], vector_store, 10)
|
| 56 |
-
|
| 57 |
-
# Launch the Gradio app
|
| 58 |
-
config = AppConfig(vector_store= vector_store, gen_llm = gen_llm, val_llm = val_llm)
|
| 59 |
-
launch_gradio(config)
|
| 60 |
-
|
| 61 |
-
logging.info("Finished!!!")
|
| 62 |
-
|
| 63 |
if __name__ == "__main__":
|
| 64 |
-
main()
|
|
|
|
| 1 |
+
import json
|
| 2 |
import logging
|
| 3 |
+
from app import launch_gradio_app
|
| 4 |
+
from scripts.download_files import download_file, get_file_list
|
| 5 |
+
|
| 6 |
+
def load_config(config_file="config.json"):
|
| 7 |
+
"""Load configuration from the config file."""
|
| 8 |
+
try:
|
| 9 |
+
with open(config_file, "r", encoding="utf-8") as f:
|
| 10 |
+
config = json.load(f)
|
| 11 |
+
return config
|
| 12 |
+
except Exception as e:
|
| 13 |
+
logging.info(f"Error loading config: {e}")
|
| 14 |
+
return {}
|
| 15 |
|
| 16 |
def main():
|
| 17 |
+
# Load configuration
|
| 18 |
+
config = load_config()
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
+
logging.info(f"Model: {config['model_name']}")
|
| 21 |
+
logging.info(f"Noise Rate: {config['noise_rate']}")
|
| 22 |
+
logging.info(f"Passage Number: {config['passage_num']}")
|
| 23 |
+
logging.info(f"Number of Queries: {config['num_queries']}")
|
| 24 |
|
| 25 |
+
# Download files from the GitHub repository
|
| 26 |
+
files = get_file_list()
|
| 27 |
+
for file in files:
|
| 28 |
+
download_file(file)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
+
launch_gradio_app(config)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
if __name__ == "__main__":
|
| 33 |
+
main()
|