Spaces:
Sleeping
Sleeping
import json | |
import tqdm | |
import logging | |
from scripts.get_prediction_file import get_prediction_file | |
from scripts.groq_client import GroqClient | |
from scripts.helper import adaptive_delay, ensure_directory_exists, load_used_data, update_config | |
from scripts.prompt import get_factual_prompt | |
def evaluate_factual_robustness(config): | |
"""Evaluates negative rejection for a given model under multiple correct_rate/noise_rate conditions.""" | |
model_name = config['model_name'] | |
if model_name in config['models']: | |
model = GroqClient(plm=model_name) | |
else: | |
logging.warning(f"Skipping unknown model: {model_name}") | |
return | |
# Define the conditions to test | |
conditions = [ | |
{"correct_rate": 1.0, "noise_rate": 0.2, "label": "factual_only"}, # factual documents with some noisy documents | |
{"correct_rate": 0.0, "noise_rate": 0.4, "label": "counterfactual"} # Counterfactual + noise | |
] | |
base_path = "results/Counterfactual Robustness" | |
result_file = f"{base_path}/scores_{config['output_file_extension']}.json" | |
final_scores = {"conditions": []} | |
def process_query(model, data, used_data, output_file): | |
"""Processes a single query, generates evaluation, and writes the result.""" | |
if data['id'] in used_data and data['query'] == used_data[data['id']]['query'] and data['ans'] == used_data[data['id']]['ans']: | |
output_file.write(json.dumps(used_data[data['id']], ensure_ascii=False) + '\n') | |
return used_data[data['id']] | |
try: | |
instruction = get_factual_prompt(data['query'], data['prediction']) | |
#eval_model = GroqClient(plm='llama3-70b-8192') | |
for attempt in range(1, 4): | |
evaluation = model.generate(instruction) | |
if evaluation: | |
break | |
adaptive_delay(attempt) | |
data['evaluation'] = evaluation | |
logging.info(f"Model Response for Factual robustness: {evaluation}") | |
output_file.write(json.dumps(data, ensure_ascii=False) + '\n') | |
return data | |
except Exception as e: | |
print(f"Error processing query: {e}") | |
return None | |
def calculate_scores(results, condition): | |
"""Calculates and returns rejection rates and other metrics.""" | |
rejecttt = 0 | |
tt = 0 | |
correct_tt = 0 | |
for i in results: | |
if "has identified" in i['evaluation'] or "Yes" in i['evaluation']: | |
rejecttt += 1 | |
if 0 not in i['label'] and 1 in i['label']: | |
correct_tt += 1 | |
if 0 not in i['label'] and 1 in i['label']: | |
tt += 1 | |
scores = { | |
'reject_rate': rejecttt / len(results) if len(results) > 0 else 0, #Error Detection Rate (ED) | |
'all_rate': tt / len(results) if len(results) > 0 else 0, | |
'correct_rate': correct_tt / rejecttt if rejecttt > 0 else 0, #Error Correction Rate (CR) | |
'tt': tt, | |
'rejecttt': rejecttt, | |
'correct_tt': correct_tt, | |
'nums': len(results), | |
'noise_rate': condition['noise_rate'], | |
'condition_label': condition['label'] | |
} | |
return scores | |
for condition in conditions: | |
logging.info(f"\nEvaluating condition: {condition['label']} (correct_rate={condition['correct_rate']}, noise_rate={condition['noise_rate']})") | |
# Update config with current condition's noise_rate | |
config['noise_rate'] = condition['noise_rate'] | |
#config['passage_num'] = 10 | |
update_config(config) | |
# File paths with condition-specific suffixes | |
pred_file = get_prediction_file(config, condition['correct_rate']) | |
output_file = f"{base_path}/output_{config['output_file_extension']}.json" | |
ensure_directory_exists(output_file) | |
logging.info(f"Factual pred file for {condition['label']}: {pred_file}") | |
# Load or recalculate data | |
used_data = [] | |
results = [] | |
if config['UsePreCalculatedValue']: | |
logging.info(f"Trying to use pre-calculated values for {condition['label']}") | |
used_data = load_used_data(output_file) | |
else: | |
logging.info(f"Recalculating the metrics for {condition['label']}...") | |
with open(output_file, 'w', encoding='utf-8') as f_out, open(pred_file, 'r', encoding='utf-8') as f_eval: | |
for line in tqdm.tqdm(f_eval): | |
data = json.loads(line) | |
processed_data = process_query(model, data, used_data, f_out) | |
if processed_data: | |
results.append(processed_data) | |
# Compute and save scores | |
scores = calculate_scores(results, condition) | |
final_scores["conditions"].append(scores) | |
logging.info(f"Counterfactual Robustness Score for {condition['label']}: {scores}") | |
with open(result_file, 'w', encoding='utf-8') as f_result: | |
json.dump(final_scores, f_result, ensure_ascii=False, indent=4) | |