Upload 4 files
Browse files
retriever/document_manager.py
CHANGED
|
@@ -43,7 +43,7 @@ class DocumentManager:
|
|
| 43 |
self.document_ids[filename] = doc_id
|
| 44 |
|
| 45 |
# Chunk the pages
|
| 46 |
-
chunks = chunk_documents(page_list, doc_id, chunk_size=
|
| 47 |
self.chunked_documents[filename] = chunks
|
| 48 |
|
| 49 |
# Add chunks to vector store
|
|
|
|
| 43 |
self.document_ids[filename] = doc_id
|
| 44 |
|
| 45 |
# Chunk the pages
|
| 46 |
+
chunks = chunk_documents(page_list, doc_id, chunk_size=2000, chunk_overlap=300)
|
| 47 |
self.chunked_documents[filename] = chunks
|
| 48 |
|
| 49 |
# Add chunks to vector store
|
retriever/llm_manager.py
CHANGED
|
@@ -109,7 +109,7 @@ class LLMManager:
|
|
| 109 |
result = qa_chain.invoke({"query": question})
|
| 110 |
response = result['result']
|
| 111 |
source_docs = result['source_documents']
|
| 112 |
-
logging.info(f"Generated response for question: {question} : {response}")
|
| 113 |
return response, source_docs
|
| 114 |
except Exception as e:
|
| 115 |
logging.error(f"Error during QA chain invocation: {str(e)}")
|
|
|
|
| 109 |
result = qa_chain.invoke({"query": question})
|
| 110 |
response = result['result']
|
| 111 |
source_docs = result['source_documents']
|
| 112 |
+
#logging.info(f"Generated response for question: {question} : {response}")
|
| 113 |
return response, source_docs
|
| 114 |
except Exception as e:
|
| 115 |
logging.error(f"Error during QA chain invocation: {str(e)}")
|
retriever/vector_store_manager.py
CHANGED
|
@@ -26,13 +26,15 @@ class VectorStoreManager:
|
|
| 26 |
allow_dangerous_deserialization=True
|
| 27 |
)
|
| 28 |
else:
|
| 29 |
-
logging.info("Creating new vector store")
|
| 30 |
# Return an empty vector store; it will be populated when documents are added
|
| 31 |
return FAISS.from_texts(
|
| 32 |
texts=[""], # Dummy text to initialize
|
| 33 |
embedding=self.embedding_model,
|
| 34 |
metadatas=[{"source": "init", "doc_id": "init"}]
|
| 35 |
-
)
|
|
|
|
|
|
|
| 36 |
|
| 37 |
def add_documents(self, documents):
|
| 38 |
"""
|
|
@@ -48,10 +50,16 @@ class VectorStoreManager:
|
|
| 48 |
metadatas = [{'source': doc['source'], 'doc_id': doc['doc_id']} for doc in documents]
|
| 49 |
|
| 50 |
logging.info("Adding new documents to vector store")
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
self.vector_store.save_local(self.embedding_path)
|
| 56 |
logging.info(f"Vector store updated and saved to {self.embedding_path}")
|
| 57 |
|
|
@@ -71,7 +79,7 @@ class VectorStoreManager:
|
|
| 71 |
return []
|
| 72 |
|
| 73 |
try:
|
| 74 |
-
|
| 75 |
# Define a filter function to match doc_id
|
| 76 |
filter_fn = lambda metadata: metadata['doc_id'] == doc_id
|
| 77 |
|
|
|
|
| 26 |
allow_dangerous_deserialization=True
|
| 27 |
)
|
| 28 |
else:
|
| 29 |
+
'''logging.info("Creating new vector store")
|
| 30 |
# Return an empty vector store; it will be populated when documents are added
|
| 31 |
return FAISS.from_texts(
|
| 32 |
texts=[""], # Dummy text to initialize
|
| 33 |
embedding=self.embedding_model,
|
| 34 |
metadatas=[{"source": "init", "doc_id": "init"}]
|
| 35 |
+
)'''
|
| 36 |
+
logging.info("Creating new vector store (unpopulated)")
|
| 37 |
+
return None
|
| 38 |
|
| 39 |
def add_documents(self, documents):
|
| 40 |
"""
|
|
|
|
| 50 |
metadatas = [{'source': doc['source'], 'doc_id': doc['doc_id']} for doc in documents]
|
| 51 |
|
| 52 |
logging.info("Adding new documents to vector store")
|
| 53 |
+
|
| 54 |
+
if not self.vector_store:
|
| 55 |
+
self.vector_store = FAISS.from_texts(
|
| 56 |
+
texts=texts,
|
| 57 |
+
embedding=self.embedding_model,
|
| 58 |
+
metadatas=metadatas
|
| 59 |
+
)
|
| 60 |
+
else:
|
| 61 |
+
self.vector_store.add_texts(texts=texts, metadatas=metadatas)
|
| 62 |
+
|
| 63 |
self.vector_store.save_local(self.embedding_path)
|
| 64 |
logging.info(f"Vector store updated and saved to {self.embedding_path}")
|
| 65 |
|
|
|
|
| 79 |
return []
|
| 80 |
|
| 81 |
try:
|
| 82 |
+
query = " ".join(query.lower().split())
|
| 83 |
# Define a filter function to match doc_id
|
| 84 |
filter_fn = lambda metadata: metadata['doc_id'] == doc_id
|
| 85 |
|