Spaces:
Running
Running
gopiashokan
commited on
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,438 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
import streamlit as st
|
5 |
+
from streamlit_option_menu import option_menu
|
6 |
+
from streamlit_extras.add_vertical_space import add_vertical_space
|
7 |
+
from PyPDF2 import PdfReader
|
8 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
9 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
10 |
+
from langchain.vectorstores import FAISS
|
11 |
+
from langchain.chat_models import ChatOpenAI
|
12 |
+
from langchain.chains.question_answering import load_qa_chain
|
13 |
+
from selenium import webdriver
|
14 |
+
from selenium.webdriver.common.by import By
|
15 |
+
import warnings
|
16 |
+
warnings.filterwarnings('ignore')
|
17 |
+
|
18 |
+
|
19 |
+
def streamlit_config():
|
20 |
+
|
21 |
+
# page configuration
|
22 |
+
st.set_page_config(page_title='Resume Analyzer AI', layout="wide")
|
23 |
+
|
24 |
+
# page header transparent color
|
25 |
+
page_background_color = """
|
26 |
+
<style>
|
27 |
+
|
28 |
+
[data-testid="stHeader"]
|
29 |
+
{
|
30 |
+
background: rgba(0,0,0,0);
|
31 |
+
}
|
32 |
+
|
33 |
+
</style>
|
34 |
+
"""
|
35 |
+
st.markdown(page_background_color, unsafe_allow_html=True)
|
36 |
+
|
37 |
+
# title and position
|
38 |
+
st.markdown(f'<h1 style="text-align: center;">AI-Powered Resume Analyzer and <br> LinkedIn Scraper with Selenium</h1>',
|
39 |
+
unsafe_allow_html=True)
|
40 |
+
|
41 |
+
|
42 |
+
class resume_analyzer:
|
43 |
+
|
44 |
+
def pdf_to_chunks(pdf):
|
45 |
+
# read pdf and it returns memory address
|
46 |
+
pdf_reader = PdfReader(pdf)
|
47 |
+
|
48 |
+
# extrat text from each page separately
|
49 |
+
text = ""
|
50 |
+
for page in pdf_reader.pages:
|
51 |
+
text += page.extract_text()
|
52 |
+
|
53 |
+
# Split the long text into small chunks.
|
54 |
+
text_splitter = RecursiveCharacterTextSplitter(
|
55 |
+
chunk_size=700,
|
56 |
+
chunk_overlap=200,
|
57 |
+
length_function=len)
|
58 |
+
|
59 |
+
chunks = text_splitter.split_text(text=text)
|
60 |
+
return chunks
|
61 |
+
|
62 |
+
|
63 |
+
def resume_summary(query_with_chunks):
|
64 |
+
query = f''' need to detailed summarization of below resume and finally conclude them
|
65 |
+
|
66 |
+
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
|
67 |
+
{query_with_chunks}
|
68 |
+
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
|
69 |
+
'''
|
70 |
+
return query
|
71 |
+
|
72 |
+
|
73 |
+
def resume_strength(query_with_chunks):
|
74 |
+
query = f'''need to detailed analysis and explain of the strength of below resume and finally conclude them
|
75 |
+
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
|
76 |
+
{query_with_chunks}
|
77 |
+
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
|
78 |
+
'''
|
79 |
+
return query
|
80 |
+
|
81 |
+
|
82 |
+
def resume_weakness(query_with_chunks):
|
83 |
+
query = f'''need to detailed analysis and explain of the weakness of below resume and how to improve make a better resume.
|
84 |
+
|
85 |
+
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
|
86 |
+
{query_with_chunks}
|
87 |
+
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
|
88 |
+
'''
|
89 |
+
return query
|
90 |
+
|
91 |
+
|
92 |
+
def job_title_suggestion(query_with_chunks):
|
93 |
+
|
94 |
+
query = f''' what are the job roles i apply to likedin based on below?
|
95 |
+
|
96 |
+
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
|
97 |
+
{query_with_chunks}
|
98 |
+
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
|
99 |
+
'''
|
100 |
+
return query
|
101 |
+
|
102 |
+
|
103 |
+
def openai(openai_api_key, chunks, analyze):
|
104 |
+
|
105 |
+
# Using OpenAI service for embedding
|
106 |
+
embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)
|
107 |
+
|
108 |
+
# Facebook AI Similarity Serach library help us to convert text data to numerical vector
|
109 |
+
vectorstores = FAISS.from_texts(chunks, embedding=embeddings)
|
110 |
+
|
111 |
+
# compares the query and chunks, enabling the selection of the top 'K' most similar chunks based on their similarity scores.
|
112 |
+
docs = vectorstores.similarity_search(query=analyze, k=3)
|
113 |
+
|
114 |
+
# creates an OpenAI object, using the ChatGPT 3.5 Turbo model
|
115 |
+
llm = ChatOpenAI(model='gpt-3.5-turbo', api_key=openai_api_key)
|
116 |
+
|
117 |
+
# question-answering (QA) pipeline, making use of the load_qa_chain function
|
118 |
+
chain = load_qa_chain(llm=llm, chain_type='stuff')
|
119 |
+
|
120 |
+
response = chain.run(input_documents=docs, question=analyze)
|
121 |
+
return response
|
122 |
+
|
123 |
+
|
124 |
+
class linkedin_scrap:
|
125 |
+
|
126 |
+
def linkedin_open_scrolldown(driver, user_job_title):
|
127 |
+
|
128 |
+
b = []
|
129 |
+
for i in user_job_title:
|
130 |
+
x = i.split()
|
131 |
+
y = '%20'.join(x)
|
132 |
+
b.append(y)
|
133 |
+
job_title = '%2C%20'.join(b)
|
134 |
+
|
135 |
+
link = f"https://in.linkedin.com/jobs/search?keywords={job_title}&location=India&locationId=&geoId=102713980&f_TPR=r604800&position=1&pageNum=0"
|
136 |
+
|
137 |
+
driver.get(link)
|
138 |
+
driver.implicitly_wait(10)
|
139 |
+
|
140 |
+
for i in range(0,3):
|
141 |
+
driver.execute_script("window.scrollTo(0, document.body.scrollHeight);")
|
142 |
+
time.sleep(5)
|
143 |
+
try:
|
144 |
+
x = driver.find_element(by=By.CSS_SELECTOR, value="button[aria-label='See more jobs']").click()
|
145 |
+
time.sleep(3)
|
146 |
+
except:
|
147 |
+
pass
|
148 |
+
|
149 |
+
|
150 |
+
def company_name(driver):
|
151 |
+
|
152 |
+
company = driver.find_elements(by=By.CSS_SELECTOR, value='h4[class="base-search-card__subtitle"]')
|
153 |
+
|
154 |
+
company_name = []
|
155 |
+
|
156 |
+
for i in company:
|
157 |
+
company_name.append(i.text)
|
158 |
+
|
159 |
+
return company_name
|
160 |
+
|
161 |
+
|
162 |
+
def company_location(driver):
|
163 |
+
|
164 |
+
location = driver.find_elements(by=By.CSS_SELECTOR, value='span[class="job-search-card__location"]')
|
165 |
+
|
166 |
+
company_location = []
|
167 |
+
|
168 |
+
for i in location:
|
169 |
+
company_location.append(i.text)
|
170 |
+
|
171 |
+
return company_location
|
172 |
+
|
173 |
+
|
174 |
+
def job_title(driver):
|
175 |
+
|
176 |
+
title = driver.find_elements(by=By.CSS_SELECTOR, value='h3[class="base-search-card__title"]')
|
177 |
+
|
178 |
+
job_title = []
|
179 |
+
|
180 |
+
for i in title:
|
181 |
+
job_title.append(i.text)
|
182 |
+
|
183 |
+
return job_title
|
184 |
+
|
185 |
+
|
186 |
+
def job_url(driver):
|
187 |
+
|
188 |
+
url = driver.find_elements(by=By.XPATH, value='//a[contains(@href, "/jobs/")]')
|
189 |
+
|
190 |
+
url_list = [i.get_attribute('href') for i in url]
|
191 |
+
|
192 |
+
job_url = []
|
193 |
+
|
194 |
+
for url in url_list:
|
195 |
+
job_url.append(url)
|
196 |
+
|
197 |
+
return job_url
|
198 |
+
|
199 |
+
|
200 |
+
def job_title_filter(x, user_job_title):
|
201 |
+
|
202 |
+
s = [i.lower() for i in user_job_title]
|
203 |
+
suggestion = []
|
204 |
+
for i in s:
|
205 |
+
suggestion.extend(i.split())
|
206 |
+
|
207 |
+
s = x.split()
|
208 |
+
a = [i.lower() for i in s]
|
209 |
+
|
210 |
+
intersection = list(set(suggestion).intersection(set(a)))
|
211 |
+
return x if len(intersection) > 1 else np.nan
|
212 |
+
|
213 |
+
|
214 |
+
def get_description(driver, link):
|
215 |
+
|
216 |
+
driver.get(link)
|
217 |
+
time.sleep(3)
|
218 |
+
|
219 |
+
driver.find_element(by=By.CSS_SELECTOR,
|
220 |
+
value='button[data-tracking-control-name="public_jobs_show-more-html-btn"]').click()
|
221 |
+
time.sleep(2)
|
222 |
+
|
223 |
+
description = driver.find_elements(by=By.CSS_SELECTOR,
|
224 |
+
value='div[class="show-more-less-html__markup relative overflow-hidden"]')
|
225 |
+
driver.implicitly_wait(4)
|
226 |
+
|
227 |
+
for j in description:
|
228 |
+
return j.text
|
229 |
+
|
230 |
+
|
231 |
+
def data_scrap(driver, user_job_title):
|
232 |
+
|
233 |
+
# combine the all data to single dataframe
|
234 |
+
df = pd.DataFrame(linkedin_scrap.company_name(driver), columns=['Company Name'])
|
235 |
+
df['Job Title'] = pd.DataFrame(linkedin_scrap.job_title(driver))
|
236 |
+
df['Location'] = pd.DataFrame(linkedin_scrap.company_location(driver))
|
237 |
+
df['Website URL'] = pd.DataFrame(linkedin_scrap.job_url(driver))
|
238 |
+
|
239 |
+
# job title filter based on user input
|
240 |
+
df['Job Title'] = df['Job Title'].apply(lambda x: linkedin_scrap.job_title_filter(x, user_job_title))
|
241 |
+
df = df.dropna()
|
242 |
+
df.reset_index(drop=True, inplace=True)
|
243 |
+
df = df.iloc[:10, :]
|
244 |
+
|
245 |
+
# make a list after filter
|
246 |
+
website_url = df['Website URL'].tolist()
|
247 |
+
|
248 |
+
# add job description in df
|
249 |
+
job_description = []
|
250 |
+
|
251 |
+
for i in range(0, len(website_url)):
|
252 |
+
link = website_url[i]
|
253 |
+
data = linkedin_scrap.get_description(driver, link)
|
254 |
+
if data is not None and len(data.strip()) > 0:
|
255 |
+
job_description.append(data)
|
256 |
+
else:
|
257 |
+
job_description.append('Description Not Available')
|
258 |
+
|
259 |
+
df['Job Description'] = pd.DataFrame(job_description, columns=['Description'])
|
260 |
+
df = df.dropna()
|
261 |
+
df.reset_index(drop=True, inplace=True)
|
262 |
+
return df
|
263 |
+
|
264 |
+
|
265 |
+
def main(user_job_title):
|
266 |
+
|
267 |
+
driver = webdriver.Chrome()
|
268 |
+
driver.maximize_window()
|
269 |
+
|
270 |
+
linkedin_scrap.linkedin_open_scrolldown(driver, user_job_title)
|
271 |
+
|
272 |
+
final_df = linkedin_scrap.data_scrap(driver, user_job_title)
|
273 |
+
driver.quit()
|
274 |
+
|
275 |
+
return final_df
|
276 |
+
|
277 |
+
|
278 |
+
streamlit_config()
|
279 |
+
add_vertical_space(1)
|
280 |
+
|
281 |
+
|
282 |
+
# sidebar
|
283 |
+
with st.sidebar:
|
284 |
+
|
285 |
+
add_vertical_space(3)
|
286 |
+
|
287 |
+
option = option_menu(menu_title='', options=['Summary', 'Strength', 'Weakness', 'Job Titles', 'Linkedin Jobs', 'Exit'],
|
288 |
+
icons=['house-fill', 'database-fill', 'pass-fill', 'list-ul', 'linkedin', 'sign-turn-right-fill'])
|
289 |
+
|
290 |
+
|
291 |
+
if option == 'Summary':
|
292 |
+
|
293 |
+
# file upload
|
294 |
+
pdf = st.file_uploader(label='', type='pdf')
|
295 |
+
openai_api_key = st.text_input(label='OpenAI API Key', type='password')
|
296 |
+
|
297 |
+
try:
|
298 |
+
if pdf is not None and openai_api_key is not None:
|
299 |
+
pdf_chunks = resume_analyzer.pdf_to_chunks(pdf)
|
300 |
+
|
301 |
+
summary = resume_analyzer.resume_summary(query_with_chunks=pdf_chunks)
|
302 |
+
result_summary = resume_analyzer.openai(openai_api_key=openai_api_key, chunks=pdf_chunks, analyze=summary)
|
303 |
+
|
304 |
+
st.subheader('Summary:')
|
305 |
+
st.write(result_summary)
|
306 |
+
|
307 |
+
except Exception as e:
|
308 |
+
col1, col2 = st.columns(2)
|
309 |
+
with col1:
|
310 |
+
st.warning(e)
|
311 |
+
|
312 |
+
|
313 |
+
elif option == 'Strength':
|
314 |
+
|
315 |
+
# file upload
|
316 |
+
pdf = st.file_uploader(label='', type='pdf')
|
317 |
+
openai_api_key = st.text_input(label='OpenAI API Key', type='password')
|
318 |
+
|
319 |
+
try:
|
320 |
+
if pdf is not None and openai_api_key is not None:
|
321 |
+
|
322 |
+
pdf_chunks = resume_analyzer.pdf_to_chunks(pdf)
|
323 |
+
|
324 |
+
# Resume summary
|
325 |
+
summary = resume_analyzer.resume_summary(query_with_chunks=pdf_chunks)
|
326 |
+
result_summary = resume_analyzer.openai(openai_api_key=openai_api_key, chunks=pdf_chunks, analyze=summary)
|
327 |
+
|
328 |
+
strength = resume_analyzer.resume_strength(query_with_chunks=result_summary)
|
329 |
+
result_strength = resume_analyzer.openai(openai_api_key=openai_api_key, chunks=pdf_chunks, analyze=strength)
|
330 |
+
|
331 |
+
st.subheader('Strength:')
|
332 |
+
st.write(result_strength)
|
333 |
+
|
334 |
+
except Exception as e:
|
335 |
+
col1, col2 = st.columns(2)
|
336 |
+
with col1:
|
337 |
+
st.warning(e)
|
338 |
+
|
339 |
+
|
340 |
+
elif option == 'Weakness':
|
341 |
+
|
342 |
+
# file upload
|
343 |
+
pdf = st.file_uploader(label='', type='pdf')
|
344 |
+
openai_api_key = st.text_input(label='OpenAI API Key', type='password')
|
345 |
+
|
346 |
+
try:
|
347 |
+
if pdf is not None and openai_api_key is not None:
|
348 |
+
|
349 |
+
pdf_chunks = resume_analyzer.pdf_to_chunks(pdf)
|
350 |
+
|
351 |
+
# Resume summary
|
352 |
+
summary = resume_analyzer.resume_summary(query_with_chunks=pdf_chunks)
|
353 |
+
result_summary = resume_analyzer.openai(openai_api_key=openai_api_key, chunks=pdf_chunks, analyze=summary)
|
354 |
+
|
355 |
+
weakness = resume_analyzer.resume_weakness(query_with_chunks=result_summary)
|
356 |
+
result_weakness = resume_analyzer.openai(openai_api_key=openai_api_key, chunks=pdf_chunks, analyze=weakness)
|
357 |
+
|
358 |
+
st.subheader('Weakness:')
|
359 |
+
st.write(result_weakness)
|
360 |
+
|
361 |
+
except Exception as e:
|
362 |
+
col1, col2 = st.columns(2)
|
363 |
+
with col1:
|
364 |
+
st.warning(e)
|
365 |
+
|
366 |
+
|
367 |
+
elif option == 'Job Titles':
|
368 |
+
|
369 |
+
# file upload
|
370 |
+
pdf = st.file_uploader(label='', type='pdf')
|
371 |
+
openai_api_key = st.text_input(label='OpenAI API Key', type='password')
|
372 |
+
|
373 |
+
try:
|
374 |
+
if pdf is not None and openai_api_key is not None:
|
375 |
+
pdf_chunks = resume_analyzer.pdf_to_chunks(pdf)
|
376 |
+
|
377 |
+
# Resume summary
|
378 |
+
summary = resume_analyzer.resume_summary(query_with_chunks=pdf_chunks)
|
379 |
+
result_summary = resume_analyzer.openai(openai_api_key=openai_api_key, chunks=pdf_chunks, analyze=summary)
|
380 |
+
|
381 |
+
job_suggestion = resume_analyzer.job_title_suggestion(query_with_chunks=result_summary)
|
382 |
+
result_suggestion = resume_analyzer.openai(openai_api_key=openai_api_key, chunks=pdf_chunks, analyze=job_suggestion)
|
383 |
+
|
384 |
+
st.subheader('Suggestion: ')
|
385 |
+
st.write(result_suggestion)
|
386 |
+
|
387 |
+
except Exception as e:
|
388 |
+
col1, col2 = st.columns(2)
|
389 |
+
with col1:
|
390 |
+
st.warning(e)
|
391 |
+
|
392 |
+
|
393 |
+
elif option == 'Linkedin Jobs':
|
394 |
+
|
395 |
+
try:
|
396 |
+
# get user input of job title
|
397 |
+
user_input_job_title = st.text_input(label='Enter Job Titles (with comma separated):')
|
398 |
+
submit = st.button('Submit')
|
399 |
+
|
400 |
+
if submit and len(user_input_job_title) > 0:
|
401 |
+
|
402 |
+
user_job_title = user_input_job_title.split(',')
|
403 |
+
|
404 |
+
df = linkedin_scrap.main(user_job_title)
|
405 |
+
|
406 |
+
l = len(df['Company Name'])
|
407 |
+
for i in range(0, l):
|
408 |
+
st.write(f"Company Name : {df.iloc[i,0]}")
|
409 |
+
st.write(f"Job Title : {df.iloc[i,1]}")
|
410 |
+
st.write(f"Location : {df.iloc[i,2]}")
|
411 |
+
st.write(f"Website URL : {df.iloc[i,3]}")
|
412 |
+
with st.expander(label='Job Desription'):
|
413 |
+
st.write(df.iloc[i, 4])
|
414 |
+
st.write('')
|
415 |
+
st.write('')
|
416 |
+
|
417 |
+
elif submit and len(user_input_job_title) == 0:
|
418 |
+
col1, col2 = st.columns(2)
|
419 |
+
with col1:
|
420 |
+
st.info('Please Enter the Job Titles')
|
421 |
+
|
422 |
+
except:
|
423 |
+
st.write('')
|
424 |
+
st.info("This feature is currently not working in the deployed Streamlit application due to a 'selenium.common.exceptions.WebDriverException' error.")
|
425 |
+
st.write('')
|
426 |
+
|
427 |
+
st.write(
|
428 |
+
"Please use the local Streamlit application for a smooth experience: [http://localhost:8501](http://localhost:8501)")
|
429 |
+
|
430 |
+
|
431 |
+
elif option == 'Exit':
|
432 |
+
|
433 |
+
add_vertical_space(3)
|
434 |
+
col1, col2, col3 = st.columns([0.3,0.4,0.3])
|
435 |
+
with col2:
|
436 |
+
st.success('Thank you for your time. Exiting the application')
|
437 |
+
st.balloons()
|
438 |
+
|