Spaces:
Running
Running
File size: 24,208 Bytes
1bca89e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 |
import time
import numpy as np
import pandas as pd
import streamlit as st
from streamlit_option_menu import option_menu
from streamlit_extras.add_vertical_space import add_vertical_space
from PyPDF2 import PdfReader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.vectorstores import FAISS
from langchain.chat_models import ChatOpenAI
from langchain.chains.question_answering import load_qa_chain
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.common.keys import Keys
from selenium.common.exceptions import NoSuchElementException
import warnings
warnings.filterwarnings('ignore')
def streamlit_config():
# page configuration
st.set_page_config(page_title='Resume Analyzer AI', layout="wide")
# page header transparent color
page_background_color = """
<style>
[data-testid="stHeader"]
{
background: rgba(0,0,0,0);
}
</style>
"""
st.markdown(page_background_color, unsafe_allow_html=True)
# title and position
st.markdown(f'<h1 style="text-align: center;">Resume Analyzer AI</h1>',
unsafe_allow_html=True)
class resume_analyzer:
def pdf_to_chunks(pdf):
# read pdf and it returns memory address
pdf_reader = PdfReader(pdf)
# extrat text from each page separately
text = ""
for page in pdf_reader.pages:
text += page.extract_text()
# Split the long text into small chunks.
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=700,
chunk_overlap=200,
length_function=len)
chunks = text_splitter.split_text(text=text)
return chunks
def openai(openai_api_key, chunks, analyze):
# Using OpenAI service for embedding
embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key)
# Facebook AI Similarity Serach library help us to convert text data to numerical vector
vectorstores = FAISS.from_texts(chunks, embedding=embeddings)
# compares the query and chunks, enabling the selection of the top 'K' most similar chunks based on their similarity scores.
docs = vectorstores.similarity_search(query=analyze, k=3)
# creates an OpenAI object, using the ChatGPT 3.5 Turbo model
llm = ChatOpenAI(model='gpt-3.5-turbo', api_key=openai_api_key)
# question-answering (QA) pipeline, making use of the load_qa_chain function
chain = load_qa_chain(llm=llm, chain_type='stuff')
response = chain.run(input_documents=docs, question=analyze)
return response
def summary_prompt(query_with_chunks):
query = f''' need to detailed summarization of below resume and finally conclude them
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
{query_with_chunks}
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
'''
return query
def resume_summary():
with st.form(key='Summary'):
# User Upload the Resume
add_vertical_space(1)
pdf = st.file_uploader(label='Upload Your Resume', type='pdf')
add_vertical_space(1)
# Enter OpenAI API Key
col1,col2 = st.columns([0.6,0.4])
with col1:
openai_api_key = st.text_input(label='Enter OpenAI API Key', type='password')
add_vertical_space(2)
# Click on Submit Button
submit = st.form_submit_button(label='Submit')
add_vertical_space(1)
add_vertical_space(3)
if submit:
if pdf is not None and openai_api_key != '':
try:
with st.spinner('Processing...'):
pdf_chunks = resume_analyzer.pdf_to_chunks(pdf)
summary_prompt = resume_analyzer.summary_prompt(query_with_chunks=pdf_chunks)
summary = resume_analyzer.openai(openai_api_key=openai_api_key, chunks=pdf_chunks, analyze=summary_prompt)
st.markdown(f'<h4 style="color: orange;">Summary:</h4>', unsafe_allow_html=True)
st.write(summary)
except Exception as e:
st.markdown(f'<h5 style="text-align: center;color: orange;">{e}</h5>', unsafe_allow_html=True)
elif pdf is None:
st.markdown(f'<h5 style="text-align: center;color: orange;">Please Upload Your Resume</h5>', unsafe_allow_html=True)
elif openai_api_key == '':
st.markdown(f'<h5 style="text-align: center;color: orange;">Please Enter OpenAI API Key</h5>', unsafe_allow_html=True)
def strength_prompt(query_with_chunks):
query = f'''need to detailed analysis and explain of the strength of below resume and finally conclude them
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
{query_with_chunks}
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
'''
return query
def resume_strength():
with st.form(key='Strength'):
# User Upload the Resume
add_vertical_space(1)
pdf = st.file_uploader(label='Upload Your Resume', type='pdf')
add_vertical_space(1)
# Enter OpenAI API Key
col1,col2 = st.columns([0.6,0.4])
with col1:
openai_api_key = st.text_input(label='Enter OpenAI API Key', type='password')
add_vertical_space(2)
# Click on Submit Button
submit = st.form_submit_button(label='Submit')
add_vertical_space(1)
add_vertical_space(3)
if submit:
if pdf is not None and openai_api_key != '':
try:
with st.spinner('Processing...'):
pdf_chunks = resume_analyzer.pdf_to_chunks(pdf)
summary_prompt = resume_analyzer.summary_prompt(query_with_chunks=pdf_chunks)
summary = resume_analyzer.openai(openai_api_key=openai_api_key, chunks=pdf_chunks, analyze=summary_prompt)
strength_prompt = resume_analyzer.strength_prompt(query_with_chunks=summary)
strength = resume_analyzer.openai(openai_api_key=openai_api_key, chunks=pdf_chunks, analyze=strength_prompt)
st.markdown(f'<h4 style="color: orange;">Strength:</h4>', unsafe_allow_html=True)
st.write(strength)
except Exception as e:
st.markdown(f'<h5 style="text-align: center;color: orange;">{e}</h5>', unsafe_allow_html=True)
elif pdf is None:
st.markdown(f'<h5 style="text-align: center;color: orange;">Please Upload Your Resume</h5>', unsafe_allow_html=True)
elif openai_api_key == '':
st.markdown(f'<h5 style="text-align: center;color: orange;">Please Enter OpenAI API Key</h5>', unsafe_allow_html=True)
def weakness_prompt(query_with_chunks):
query = f'''need to detailed analysis and explain of the weakness of below resume and how to improve make a better resume.
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
{query_with_chunks}
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
'''
return query
def resume_weakness():
with st.form(key='Weakness'):
# User Upload the Resume
add_vertical_space(1)
pdf = st.file_uploader(label='Upload Your Resume', type='pdf')
add_vertical_space(1)
# Enter OpenAI API Key
col1,col2 = st.columns([0.6,0.4])
with col1:
openai_api_key = st.text_input(label='Enter OpenAI API Key', type='password')
add_vertical_space(2)
# Click on Submit Button
submit = st.form_submit_button(label='Submit')
add_vertical_space(1)
add_vertical_space(3)
if submit:
if pdf is not None and openai_api_key != '':
try:
with st.spinner('Processing...'):
pdf_chunks = resume_analyzer.pdf_to_chunks(pdf)
summary_prompt = resume_analyzer.summary_prompt(query_with_chunks=pdf_chunks)
summary = resume_analyzer.openai(openai_api_key=openai_api_key, chunks=pdf_chunks, analyze=summary_prompt)
weakness_prompt = resume_analyzer.weakness_prompt(query_with_chunks=summary)
weakness = resume_analyzer.openai(openai_api_key=openai_api_key, chunks=pdf_chunks, analyze=weakness_prompt)
st.markdown(f'<h4 style="color: orange;">Weakness and Suggestions:</h4>', unsafe_allow_html=True)
st.write(weakness)
except Exception as e:
st.markdown(f'<h5 style="text-align: center;color: orange;">{e}</h5>', unsafe_allow_html=True)
elif pdf is None:
st.markdown(f'<h5 style="text-align: center;color: orange;">Please Upload Your Resume</h5>', unsafe_allow_html=True)
elif openai_api_key == '':
st.markdown(f'<h5 style="text-align: center;color: orange;">Please Enter OpenAI API Key</h5>', unsafe_allow_html=True)
def job_title_prompt(query_with_chunks):
query = f''' what are the job roles i apply to likedin based on below?
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
{query_with_chunks}
"""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""""
'''
return query
def job_title_suggestion():
with st.form(key='Job Titles'):
# User Upload the Resume
add_vertical_space(1)
pdf = st.file_uploader(label='Upload Your Resume', type='pdf')
add_vertical_space(1)
# Enter OpenAI API Key
col1,col2 = st.columns([0.6,0.4])
with col1:
openai_api_key = st.text_input(label='Enter OpenAI API Key', type='password')
add_vertical_space(2)
# Click on Submit Button
submit = st.form_submit_button(label='Submit')
add_vertical_space(1)
add_vertical_space(3)
if submit:
if pdf is not None and openai_api_key != '':
try:
with st.spinner('Processing...'):
pdf_chunks = resume_analyzer.pdf_to_chunks(pdf)
summary_prompt = resume_analyzer.summary_prompt(query_with_chunks=pdf_chunks)
summary = resume_analyzer.openai(openai_api_key=openai_api_key, chunks=pdf_chunks, analyze=summary_prompt)
job_title_prompt = resume_analyzer.job_title_prompt(query_with_chunks=summary)
job_title = resume_analyzer.openai(openai_api_key=openai_api_key, chunks=pdf_chunks, analyze=job_title_prompt)
st.markdown(f'<h4 style="color: orange;">Job Titles:</h4>', unsafe_allow_html=True)
st.write(job_title)
except Exception as e:
st.markdown(f'<h5 style="text-align: center;color: orange;">{e}</h5>', unsafe_allow_html=True)
elif pdf is None:
st.markdown(f'<h5 style="text-align: center;color: orange;">Please Upload Your Resume</h5>', unsafe_allow_html=True)
elif openai_api_key == '':
st.markdown(f'<h5 style="text-align: center;color: orange;">Please Enter OpenAI API Key</h5>', unsafe_allow_html=True)
class linkedin_scraper:
def webdriver_setup():
options = webdriver.ChromeOptions()
options.add_argument('--headless')
options.add_argument('--no-sandbox')
options.add_argument('--disable-dev-shm-usage')
driver = webdriver.Chrome(options=options)
driver.maximize_window()
return driver
def get_userinput():
add_vertical_space(2)
with st.form(key='linkedin_scarp'):
add_vertical_space(1)
col1,col2,col3 = st.columns([0.5,0.3,0.2], gap='medium')
with col1:
job_title_input = st.text_input(label='Job Title')
job_title_input = job_title_input.split(',')
with col2:
job_location = st.text_input(label='Job Location', value='India')
with col3:
job_count = st.number_input(label='Job Count', min_value=1, value=1, step=1)
# Submit Button
add_vertical_space(1)
submit = st.form_submit_button(label='Submit')
add_vertical_space(1)
return job_title_input, job_location, job_count, submit
def build_url(job_title, job_location):
b = []
for i in job_title:
x = i.split()
y = '%20'.join(x)
b.append(y)
job_title = '%2C%20'.join(b)
link = f"https://in.linkedin.com/jobs/search?keywords={job_title}&location={job_location}&locationId=&geoId=102713980&f_TPR=r604800&position=1&pageNum=0"
return link
def open_link(driver, link):
while True:
# Break the Loop if the Element is Found, Indicating the Page Loaded Correctly
try:
driver.get(link)
driver.implicitly_wait(5)
time.sleep(3)
driver.find_element(by=By.CSS_SELECTOR, value='span.switcher-tabs__placeholder-text.m-auto')
return
# Retry Loading the Page
except NoSuchElementException:
continue
def link_open_scrolldown(driver, link, job_count):
# Open the Link in LinkedIn
linkedin_scraper.open_link(driver, link)
# Scroll Down the Page
for i in range(0,job_count):
# Simulate clicking the Page Up button
body = driver.find_element(by=By.TAG_NAME, value='body')
body.send_keys(Keys.PAGE_UP)
# Locate the sign-in modal dialog
try:
driver.find_element(by=By.CSS_SELECTOR,
value="button[data-tracking-control-name='public_jobs_contextual-sign-in-modal_modal_dismiss']>icon>svg").click()
except:
pass
# Scoll down the Page to End
driver.execute_script("window.scrollTo(0, document.body.scrollHeight);")
driver.implicitly_wait(2)
# Click on See More Jobs Button if Present
try:
x = driver.find_element(by=By.CSS_SELECTOR, value="button[aria-label='See more jobs']").click()
driver.implicitly_wait(5)
except:
pass
def job_title_filter(scrap_job_title, user_job_title_input):
# User Job Title Convert into Lower Case
user_input = [i.lower().strip() for i in user_job_title_input]
# scraped Job Title Convert into Lower Case
scrap_title = [i.lower().strip() for i in [scrap_job_title]]
# Verify Any User Job Title in the scraped Job Title
confirmation_count = 0
for i in user_input:
if all(j in scrap_title[0] for j in i.split()):
confirmation_count += 1
# Return Job Title if confirmation_count greater than 0 else return NaN
if confirmation_count > 0:
return scrap_job_title
else:
return np.nan
def scrap_company_data(driver, job_title_input, job_location):
# scraping the Company Data
company = driver.find_elements(by=By.CSS_SELECTOR, value='h4[class="base-search-card__subtitle"]')
company_name = [i.text for i in company]
location = driver.find_elements(by=By.CSS_SELECTOR, value='span[class="job-search-card__location"]')
company_location = [i.text for i in location]
title = driver.find_elements(by=By.CSS_SELECTOR, value='h3[class="base-search-card__title"]')
job_title = [i.text for i in title]
url = driver.find_elements(by=By.XPATH, value='//a[contains(@href, "/jobs/")]')
website_url = [i.get_attribute('href') for i in url]
# combine the all data to single dataframe
df = pd.DataFrame(company_name, columns=['Company Name'])
df['Job Title'] = pd.DataFrame(job_title)
df['Location'] = pd.DataFrame(company_location)
df['Website URL'] = pd.DataFrame(website_url)
# Return Job Title if there are more than 1 matched word else return NaN
df['Job Title'] = df['Job Title'].apply(lambda x: linkedin_scraper.job_title_filter(x, job_title_input))
# Return Location if User Job Location in Scraped Location else return NaN
df['Location'] = df['Location'].apply(lambda x: x if job_location.lower() in x.lower() else np.nan)
# Drop Null Values and Reset Index
df = df.dropna()
df.reset_index(drop=True, inplace=True)
return df
def scrap_job_description(driver, df, job_count):
# Get URL into List
website_url = df['Website URL'].tolist()
# Scrap the Job Description
job_description = []
description_count = 0
for i in range(0, len(website_url)):
try:
# Open the Link in LinkedIn
linkedin_scraper.open_link(driver, website_url[i])
# Click on Show More Button
driver.find_element(by=By.CSS_SELECTOR, value='button[data-tracking-control-name="public_jobs_show-more-html-btn"]').click()
driver.implicitly_wait(5)
time.sleep(1)
# Get Job Description
description = driver.find_elements(by=By.CSS_SELECTOR, value='div[class="show-more-less-html__markup relative overflow-hidden"]')
data = [i.text for i in description][0]
# Check Description length and Duplicate
if len(data.strip()) > 0 and data not in job_description:
job_description.append(data)
description_count += 1
else:
job_description.append('Description Not Available')
# If any unexpected issue
except:
job_description.append('Description Not Available')
# Check Description Count reach User Job Count
if description_count == job_count:
break
# Filter the Job Description
df = df.iloc[:len(job_description), :]
# Add Job Description in Dataframe
df['Job Description'] = pd.DataFrame(job_description, columns=['Description'])
df['Job Description'] = df['Job Description'].apply(lambda x: np.nan if x=='Description Not Available' else x)
df = df.dropna()
df.reset_index(drop=True, inplace=True)
return df
def display_data_userinterface(df_final):
# Display the Data in User Interface
add_vertical_space(1)
if len(df_final) > 0:
for i in range(0, len(df_final)):
st.markdown(f'<h3 style="color: orange;">Job Posting Details : {i+1}</h3>', unsafe_allow_html=True)
st.write(f"Company Name : {df_final.iloc[i,0]}")
st.write(f"Job Title : {df_final.iloc[i,1]}")
st.write(f"Location : {df_final.iloc[i,2]}")
st.write(f"Website URL : {df_final.iloc[i,3]}")
with st.expander(label='Job Desription'):
st.write(df_final.iloc[i, 4])
add_vertical_space(3)
else:
st.markdown(f'<h5 style="text-align: center;color: orange;">No Matching Jobs Found</h5>',
unsafe_allow_html=True)
def main():
# Initially set driver to None
driver = None
try:
job_title_input, job_location, job_count, submit = linkedin_scraper.get_userinput()
add_vertical_space(2)
if submit:
if job_title_input != [] and job_location != '':
with st.spinner('Chrome Webdriver Setup Initializing...'):
driver = linkedin_scraper.webdriver_setup()
with st.spinner('Loading More Job Listings...'):
# build URL based on User Job Title Input
link = linkedin_scraper.build_url(job_title_input, job_location)
# Open the Link in LinkedIn and Scroll Down the Page
linkedin_scraper.link_open_scrolldown(driver, link, job_count)
with st.spinner('scraping Job Details...'):
# Scraping the Company Name, Location, Job Title and URL Data
df = linkedin_scraper.scrap_company_data(driver, job_title_input, job_location)
# Scraping the Job Descriptin Data
df_final = linkedin_scraper. scrap_job_description(driver, df, job_count)
# Display the Data in User Interface
linkedin_scraper.display_data_userinterface(df_final)
# If User Click Submit Button and Job Title is Empty
elif job_title_input == []:
st.markdown(f'<h5 style="text-align: center;color: orange;">Job Title is Empty</h5>',
unsafe_allow_html=True)
elif job_location == '':
st.markdown(f'<h5 style="text-align: center;color: orange;">Job Location is Empty</h5>',
unsafe_allow_html=True)
except Exception as e:
add_vertical_space(2)
st.markdown(f'<h5 style="text-align: center;color: orange;">{e}</h5>', unsafe_allow_html=True)
finally:
if driver:
driver.quit()
# Streamlit Configuration Setup
streamlit_config()
add_vertical_space(2)
with st.sidebar:
add_vertical_space(4)
option = option_menu(menu_title='', options=['Summary', 'Strength', 'Weakness', 'Job Titles', 'Linkedin Jobs'],
icons=['house-fill', 'database-fill', 'pass-fill', 'list-ul', 'linkedin'])
if option == 'Summary':
resume_analyzer.resume_summary()
elif option == 'Strength':
resume_analyzer.resume_strength()
elif option == 'Weakness':
resume_analyzer.resume_weakness()
elif option == 'Job Titles':
resume_analyzer.job_title_suggestion()
elif option == 'Linkedin Jobs':
linkedin_scraper.main()
|