Spaces:
Runtime error
Runtime error
Upload 3 files
Browse files- app.py +69 -0
- model/model.h5 +3 -0
- requirements.txt +5 -0
app.py
ADDED
|
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import PIL.Image as Image
|
| 3 |
+
import tensorflow as tf
|
| 4 |
+
import streamlit as st
|
| 5 |
+
from streamlit_extras.add_vertical_space import add_vertical_space
|
| 6 |
+
from warnings import filterwarnings
|
| 7 |
+
filterwarnings('ignore')
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def streamlit_config():
|
| 11 |
+
|
| 12 |
+
# page configuration
|
| 13 |
+
st.set_page_config(page_title='Classification', layout='centered')
|
| 14 |
+
|
| 15 |
+
# page header transparent color
|
| 16 |
+
page_background_color = """
|
| 17 |
+
<style>
|
| 18 |
+
|
| 19 |
+
[data-testid="stHeader"]
|
| 20 |
+
{
|
| 21 |
+
background: rgba(0,0,0,0);
|
| 22 |
+
}
|
| 23 |
+
|
| 24 |
+
</style>
|
| 25 |
+
"""
|
| 26 |
+
st.markdown(page_background_color, unsafe_allow_html=True)
|
| 27 |
+
|
| 28 |
+
# title and position
|
| 29 |
+
st.markdown(f'<h1 style="text-align: center;">Potato Disease Classification</h1>',
|
| 30 |
+
unsafe_allow_html=True)
|
| 31 |
+
add_vertical_space(4)
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
# Streamlit Configuration Setup
|
| 35 |
+
streamlit_config()
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def prediction(image_path, class_names=['Potato___Early_blight', 'Potato___Late_blight', 'Potato___healthy']):
|
| 39 |
+
|
| 40 |
+
img = Image.open(image_path)
|
| 41 |
+
img_resized = img.resize((256,256))
|
| 42 |
+
img_array = tf.keras.preprocessing.image.img_to_array(img_resized)
|
| 43 |
+
img_array = np.expand_dims(img_array, axis=0)
|
| 44 |
+
|
| 45 |
+
model = tf.keras.models.load_model(r'model\model.h5')
|
| 46 |
+
prediction = model.predict(img_array)
|
| 47 |
+
|
| 48 |
+
predicted_class = class_names[np.argmax(prediction)]
|
| 49 |
+
confidence = round(np.max(prediction)*100, 2)
|
| 50 |
+
|
| 51 |
+
add_vertical_space(1)
|
| 52 |
+
st.markdown(f'<h4 style="color: orange;">Predicted Class : {predicted_class}<br>Confident : {confidence}%</h3>',
|
| 53 |
+
unsafe_allow_html=True)
|
| 54 |
+
|
| 55 |
+
add_vertical_space(1)
|
| 56 |
+
st.image(img.resize((400,300)))
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
col1,col2,col3 = st.columns([0.1,0.9,0.1])
|
| 60 |
+
with col2:
|
| 61 |
+
input_image = st.file_uploader(label='Upload the Image', type=['jpg', 'jpeg', 'png'])
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
if input_image is not None:
|
| 65 |
+
|
| 66 |
+
col1,col2,col3 = st.columns([0.2,0.8,0.2])
|
| 67 |
+
with col2:
|
| 68 |
+
prediction(input_image)
|
| 69 |
+
|
model/model.h5
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8e69552fb43cb1ac43301ca71b19f20e7f7ff4fe2ff13ef308feaf93b2fb45ff
|
| 3 |
+
size 2286592
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
numpy
|
| 2 |
+
pillow
|
| 3 |
+
tensorflow
|
| 4 |
+
streamlit
|
| 5 |
+
streamlit_extras
|