Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -1,158 +1,158 @@
|
|
1 |
-
import os
|
2 |
-
import numpy as np
|
3 |
-
import spacy
|
4 |
-
import nltk
|
5 |
-
import tensorflow as tf
|
6 |
-
import streamlit as st
|
7 |
-
from streamlit_extras.add_vertical_space import add_vertical_space
|
8 |
-
from bs4 import BeautifulSoup
|
9 |
-
from gensim.models import Word2Vec
|
10 |
-
from nltk.tokenize import word_tokenize
|
11 |
-
from warnings import filterwarnings
|
12 |
-
filterwarnings('ignore')
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
def streamlit_config():
|
17 |
-
|
18 |
-
# page configuration
|
19 |
-
st.set_page_config(page_title='Classification', layout='centered')
|
20 |
-
|
21 |
-
# page header transparent color
|
22 |
-
page_background_color = """
|
23 |
-
<style>
|
24 |
-
|
25 |
-
[data-testid="stHeader"]
|
26 |
-
{
|
27 |
-
background: rgba(0,0,0,0);
|
28 |
-
}
|
29 |
-
|
30 |
-
</style>
|
31 |
-
"""
|
32 |
-
st.markdown(page_background_color, unsafe_allow_html=True)
|
33 |
-
|
34 |
-
# title and position
|
35 |
-
st.markdown(f'<h1 style="text-align: center;">Financial Document Classification</h1>',
|
36 |
-
unsafe_allow_html=True)
|
37 |
-
add_vertical_space(4)
|
38 |
-
|
39 |
-
|
40 |
-
def text_extract_from_html(html_file):
|
41 |
-
|
42 |
-
# Read the uploaded HTML file
|
43 |
-
html_content = html_file.read().decode('utf-8')
|
44 |
-
|
45 |
-
# Parse the HTML Content
|
46 |
-
soup = BeautifulSoup(html_content, 'html.parser')
|
47 |
-
|
48 |
-
# Extract the Text
|
49 |
-
text = soup.get_text()
|
50 |
-
|
51 |
-
# Split the Text and Remove Unwanted Space
|
52 |
-
result = [i.strip() for i in text.split()]
|
53 |
-
|
54 |
-
return result
|
55 |
-
|
56 |
-
|
57 |
-
def text_processing(text):
|
58 |
-
|
59 |
-
# spaCy Engine
|
60 |
-
nlp = spacy.load('en_core_web_lg')
|
61 |
-
|
62 |
-
# Process the Text with spaCy
|
63 |
-
doc = nlp(' '.join(text))
|
64 |
-
|
65 |
-
# Tokenization, Lemmatization, and Remove Stopwords, punctuation, digits
|
66 |
-
token_list = [
|
67 |
-
token.lemma_.lower().strip()
|
68 |
-
for token in doc
|
69 |
-
if token.text.lower() not in nlp.Defaults.stop_words and token.text.isalpha()
|
70 |
-
]
|
71 |
-
|
72 |
-
if len(token_list) > 0:
|
73 |
-
return ' '.join(token_list)
|
74 |
-
else:
|
75 |
-
return 'empty'
|
76 |
-
|
77 |
-
|
78 |
-
def sentence_embeddings(sentence):
|
79 |
-
|
80 |
-
# split the sentence into separate words
|
81 |
-
words = word_tokenize(sentence)
|
82 |
-
|
83 |
-
# load the trained model
|
84 |
-
model = Word2Vec.load('word2vec_model.bin')
|
85 |
-
|
86 |
-
# get the vectors of each words
|
87 |
-
vectors = [model.wv[word] for word in words if word in model.wv]
|
88 |
-
|
89 |
-
if vectors:
|
90 |
-
# return the average of vectors
|
91 |
-
return np.mean(vectors, axis=0)
|
92 |
-
|
93 |
-
else:
|
94 |
-
# we set the model parameter in training ---> vector_size = 300
|
95 |
-
return np.zeros(model.vector_size)
|
96 |
-
|
97 |
-
|
98 |
-
def prediction(html_file):
|
99 |
-
|
100 |
-
# Extract the Text from HTML Document
|
101 |
-
extracted_text = text_extract_from_html(html_file)
|
102 |
-
|
103 |
-
# Preprocess the Text
|
104 |
-
preprocessed_text = text_processing(extracted_text)
|
105 |
-
|
106 |
-
# Text Convert into Embeddings
|
107 |
-
features = sentence_embeddings(preprocessed_text)
|
108 |
-
|
109 |
-
# Reshape the features into match the expected input shape of Model
|
110 |
-
features = np.expand_dims(features, axis=0)
|
111 |
-
features = np.expand_dims(features, axis=2)
|
112 |
-
|
113 |
-
# Convert into Tensors
|
114 |
-
features_tensors = tf.convert_to_tensor(features, dtype=tf.float32)
|
115 |
-
|
116 |
-
# Load the Model and Prediction
|
117 |
-
model = tf.keras.models.load_model('model.h5', custom_objects = {'Orthogonal': tf.keras.initializers.Orthogonal})
|
118 |
-
prediction = model.predict(features_tensors)
|
119 |
-
|
120 |
-
# Find the Maximum Probability Value
|
121 |
-
target_label = np.argmax(prediction)
|
122 |
-
|
123 |
-
# Find the Target_Label Name
|
124 |
-
target = {0:'Balance Sheets', 1:'Cash Flow', 2:'Income Statement', 3:'Notes', 4:'Others'}
|
125 |
-
predicted_class = target[target_label]
|
126 |
-
|
127 |
-
# Find the Confidence
|
128 |
-
confidence = round(np.max(prediction)*100, 2)
|
129 |
-
|
130 |
-
add_vertical_space(1)
|
131 |
-
st.markdown(f'<h4 style="text-align: center; color: orange;">{confidence}% Match Found</h4>',
|
132 |
-
unsafe_allow_html=True)
|
133 |
-
|
134 |
-
# Display the HTML content in Streamlit
|
135 |
-
st.
|
136 |
-
|
137 |
-
add_vertical_space(1)
|
138 |
-
st.markdown(f'<h3 style="text-align: center; color: green;">{predicted_class}</h3>',
|
139 |
-
unsafe_allow_html=True)
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
# Streamlit Configuration Setup
|
144 |
-
streamlit_config()
|
145 |
-
|
146 |
-
|
147 |
-
# Check 'punkt' Already Downloaded or Not
|
148 |
-
try:
|
149 |
-
nltk.data.find('tokenizers/punkt')
|
150 |
-
except LookupError:
|
151 |
-
nltk.download('punkt')
|
152 |
-
|
153 |
-
|
154 |
-
# File uploader to upload the HTML file
|
155 |
-
input_file = st.file_uploader('Upload an HTML file', type='html')
|
156 |
-
|
157 |
-
if input_file is not None:
|
158 |
-
prediction(input_file)
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
import spacy
|
4 |
+
import nltk
|
5 |
+
import tensorflow as tf
|
6 |
+
import streamlit as st
|
7 |
+
from streamlit_extras.add_vertical_space import add_vertical_space
|
8 |
+
from bs4 import BeautifulSoup
|
9 |
+
from gensim.models import Word2Vec
|
10 |
+
from nltk.tokenize import word_tokenize
|
11 |
+
from warnings import filterwarnings
|
12 |
+
filterwarnings('ignore')
|
13 |
+
|
14 |
+
|
15 |
+
|
16 |
+
def streamlit_config():
|
17 |
+
|
18 |
+
# page configuration
|
19 |
+
st.set_page_config(page_title='Classification', layout='centered')
|
20 |
+
|
21 |
+
# page header transparent color
|
22 |
+
page_background_color = """
|
23 |
+
<style>
|
24 |
+
|
25 |
+
[data-testid="stHeader"]
|
26 |
+
{
|
27 |
+
background: rgba(0,0,0,0);
|
28 |
+
}
|
29 |
+
|
30 |
+
</style>
|
31 |
+
"""
|
32 |
+
st.markdown(page_background_color, unsafe_allow_html=True)
|
33 |
+
|
34 |
+
# title and position
|
35 |
+
st.markdown(f'<h1 style="text-align: center;">Financial Document Classification</h1>',
|
36 |
+
unsafe_allow_html=True)
|
37 |
+
add_vertical_space(4)
|
38 |
+
|
39 |
+
|
40 |
+
def text_extract_from_html(html_file):
|
41 |
+
|
42 |
+
# Read the uploaded HTML file
|
43 |
+
html_content = html_file.read().decode('utf-8')
|
44 |
+
|
45 |
+
# Parse the HTML Content
|
46 |
+
soup = BeautifulSoup(html_content, 'html.parser')
|
47 |
+
|
48 |
+
# Extract the Text
|
49 |
+
text = soup.get_text()
|
50 |
+
|
51 |
+
# Split the Text and Remove Unwanted Space
|
52 |
+
result = [i.strip() for i in text.split()]
|
53 |
+
|
54 |
+
return result
|
55 |
+
|
56 |
+
|
57 |
+
def text_processing(text):
|
58 |
+
|
59 |
+
# spaCy Engine
|
60 |
+
nlp = spacy.load('en_core_web_lg')
|
61 |
+
|
62 |
+
# Process the Text with spaCy
|
63 |
+
doc = nlp(' '.join(text))
|
64 |
+
|
65 |
+
# Tokenization, Lemmatization, and Remove Stopwords, punctuation, digits
|
66 |
+
token_list = [
|
67 |
+
token.lemma_.lower().strip()
|
68 |
+
for token in doc
|
69 |
+
if token.text.lower() not in nlp.Defaults.stop_words and token.text.isalpha()
|
70 |
+
]
|
71 |
+
|
72 |
+
if len(token_list) > 0:
|
73 |
+
return ' '.join(token_list)
|
74 |
+
else:
|
75 |
+
return 'empty'
|
76 |
+
|
77 |
+
|
78 |
+
def sentence_embeddings(sentence):
|
79 |
+
|
80 |
+
# split the sentence into separate words
|
81 |
+
words = word_tokenize(sentence)
|
82 |
+
|
83 |
+
# load the trained model
|
84 |
+
model = Word2Vec.load('word2vec_model.bin')
|
85 |
+
|
86 |
+
# get the vectors of each words
|
87 |
+
vectors = [model.wv[word] for word in words if word in model.wv]
|
88 |
+
|
89 |
+
if vectors:
|
90 |
+
# return the average of vectors
|
91 |
+
return np.mean(vectors, axis=0)
|
92 |
+
|
93 |
+
else:
|
94 |
+
# we set the model parameter in training ---> vector_size = 300
|
95 |
+
return np.zeros(model.vector_size)
|
96 |
+
|
97 |
+
|
98 |
+
def prediction(html_file):
|
99 |
+
|
100 |
+
# Extract the Text from HTML Document
|
101 |
+
extracted_text = text_extract_from_html(html_file)
|
102 |
+
|
103 |
+
# Preprocess the Text
|
104 |
+
preprocessed_text = text_processing(extracted_text)
|
105 |
+
|
106 |
+
# Text Convert into Embeddings
|
107 |
+
features = sentence_embeddings(preprocessed_text)
|
108 |
+
|
109 |
+
# Reshape the features into match the expected input shape of Model
|
110 |
+
features = np.expand_dims(features, axis=0)
|
111 |
+
features = np.expand_dims(features, axis=2)
|
112 |
+
|
113 |
+
# Convert into Tensors
|
114 |
+
features_tensors = tf.convert_to_tensor(features, dtype=tf.float32)
|
115 |
+
|
116 |
+
# Load the Model and Prediction
|
117 |
+
model = tf.keras.models.load_model('model.h5', custom_objects = {'Orthogonal': tf.keras.initializers.Orthogonal})
|
118 |
+
prediction = model.predict(features_tensors)
|
119 |
+
|
120 |
+
# Find the Maximum Probability Value
|
121 |
+
target_label = np.argmax(prediction)
|
122 |
+
|
123 |
+
# Find the Target_Label Name
|
124 |
+
target = {0:'Balance Sheets', 1:'Cash Flow', 2:'Income Statement', 3:'Notes', 4:'Others'}
|
125 |
+
predicted_class = target[target_label]
|
126 |
+
|
127 |
+
# Find the Confidence
|
128 |
+
confidence = round(np.max(prediction)*100, 2)
|
129 |
+
|
130 |
+
add_vertical_space(1)
|
131 |
+
st.markdown(f'<h4 style="text-align: center; color: orange;">{confidence}% Match Found</h4>',
|
132 |
+
unsafe_allow_html=True)
|
133 |
+
|
134 |
+
# Display the HTML content in Streamlit
|
135 |
+
st.html(html_file, height=600, scrolling=True)
|
136 |
+
|
137 |
+
add_vertical_space(1)
|
138 |
+
st.markdown(f'<h3 style="text-align: center; color: green;">{predicted_class}</h3>',
|
139 |
+
unsafe_allow_html=True)
|
140 |
+
|
141 |
+
|
142 |
+
|
143 |
+
# Streamlit Configuration Setup
|
144 |
+
streamlit_config()
|
145 |
+
|
146 |
+
|
147 |
+
# Check 'punkt' Already Downloaded or Not
|
148 |
+
try:
|
149 |
+
nltk.data.find('tokenizers/punkt')
|
150 |
+
except LookupError:
|
151 |
+
nltk.download('punkt')
|
152 |
+
|
153 |
+
|
154 |
+
# File uploader to upload the HTML file
|
155 |
+
input_file = st.file_uploader('Upload an HTML file', type='html')
|
156 |
+
|
157 |
+
if input_file is not None:
|
158 |
+
prediction(input_file)
|