gokilashree's picture
Update app.py
70b822a verified
raw
history blame
2.67 kB
from transformers import MBartForConditionalGeneration, MBart50Tokenizer, pipeline
import gradio as gr
import requests
import io
from PIL import Image
import os
import torch
# Load the translation model and tokenizer
model_name = "facebook/mbart-large-50-many-to-one-mmt"
tokenizer = MBart50Tokenizer.from_pretrained(model_name)
model = MBartForConditionalGeneration.from_pretrained(model_name)
# Use a more powerful text generation model, e.g., GPT-J-6B
text_gen_model = "EleutherAI/gpt-j-6B" # Or use 'EleutherAI/gpt-neox-20b' for better results
pipe = pipeline(
"text-generation",
model=text_gen_model,
torch_dtype=torch.float32,
device_map="auto"
)
# Use the Hugging Face API key from environment variables for text-to-image model
API_URL = "https://api-inference.huggingface.co/models/ZB-Tech/Text-to-Image"
headers = {"Authorization": f"Bearer {os.getenv('full_token')}"}
# Define the translation, text generation, and image generation function
def translate_and_generate_image(tamil_text):
# Step 1: Translate Tamil text to English using mbart-large-50
tokenizer.src_lang = "ta_IN"
inputs = tokenizer(tamil_text, return_tensors="pt")
translated_tokens = model.generate(**inputs, forced_bos_token_id=tokenizer.lang_code_to_id["en_XX"])
translated_text = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0]
# Step 2: Generate high-quality English text using GPT-J
prompt = f"Create a detailed description based on the following text: {translated_text}"
generated_text = pipe(prompt, max_length=150, temperature=0.7, top_p=0.9, top_k=50, truncation=True)[0]['generated_text']
# Step 3: Use the generated English text to create an image
def query(payload):
response = requests.post(API_URL, headers=headers, json=payload)
return response.content
# Generate image using the generated text
image_bytes = query({"inputs": generated_text})
image = Image.open(io.BytesIO(image_bytes))
return translated_text, generated_text, image
# Gradio interface setup
iface = gr.Interface(
fn=translate_and_generate_image,
inputs=gr.Textbox(lines=2, placeholder="Enter Tamil text here..."),
outputs=[gr.Textbox(label="Translated English Text"),
gr.Textbox(label="Generated Descriptive Text"),
gr.Image(label="Generated Image")],
title="Tamil to English Translation, Text Generation, and Image Creation",
description="Translate Tamil text to English using Facebook's mbart-large-50 model, generate high-quality text using GPT-J, and create an image using the generated text.",
)
# Launch Gradio app
iface.launch()