Spaces:
Runtime error
Runtime error
| from transformers import MBartForConditionalGeneration, MBart50Tokenizer, pipeline | |
| import gradio as gr | |
| import requests | |
| import io | |
| from PIL import Image | |
| import os | |
| import torch | |
| # Load the translation model and tokenizer | |
| model_name = "facebook/mbart-large-50-many-to-one-mmt" | |
| tokenizer = MBart50Tokenizer.from_pretrained(model_name) | |
| model = MBartForConditionalGeneration.from_pretrained(model_name) | |
| # Use a more powerful text generation model, e.g., GPT-J-6B | |
| text_gen_model = "EleutherAI/gpt-j-6B" # Or use 'EleutherAI/gpt-neox-20b' for better results | |
| pipe = pipeline( | |
| "text-generation", | |
| model=text_gen_model, | |
| torch_dtype=torch.float32, | |
| device_map="auto" | |
| ) | |
| # Use the Hugging Face API key from environment variables for text-to-image model | |
| API_URL = "https://api-inference.huggingface.co/models/ZB-Tech/Text-to-Image" | |
| headers = {"Authorization": f"Bearer {os.getenv('full_token')}"} | |
| # Define the translation, text generation, and image generation function | |
| def translate_and_generate_image(tamil_text): | |
| # Step 1: Translate Tamil text to English using mbart-large-50 | |
| tokenizer.src_lang = "ta_IN" | |
| inputs = tokenizer(tamil_text, return_tensors="pt") | |
| translated_tokens = model.generate(**inputs, forced_bos_token_id=tokenizer.lang_code_to_id["en_XX"]) | |
| translated_text = tokenizer.batch_decode(translated_tokens, skip_special_tokens=True)[0] | |
| # Step 2: Generate high-quality English text using GPT-J | |
| prompt = f"Create a detailed description based on the following text: {translated_text}" | |
| generated_text = pipe(prompt, max_length=150, temperature=0.7, top_p=0.9, top_k=50, truncation=True)[0]['generated_text'] | |
| # Step 3: Use the generated English text to create an image | |
| def query(payload): | |
| response = requests.post(API_URL, headers=headers, json=payload) | |
| return response.content | |
| # Generate image using the generated text | |
| image_bytes = query({"inputs": generated_text}) | |
| image = Image.open(io.BytesIO(image_bytes)) | |
| return translated_text, generated_text, image | |
| # Gradio interface setup | |
| iface = gr.Interface( | |
| fn=translate_and_generate_image, | |
| inputs=gr.Textbox(lines=2, placeholder="Enter Tamil text here..."), | |
| outputs=[gr.Textbox(label="Translated English Text"), | |
| gr.Textbox(label="Generated Descriptive Text"), | |
| gr.Image(label="Generated Image")], | |
| title="Tamil to English Translation, Text Generation, and Image Creation", | |
| description="Translate Tamil text to English using Facebook's mbart-large-50 model, generate high-quality text using GPT-J, and create an image using the generated text.", | |
| ) | |
| # Launch Gradio app | |
| iface.launch() | |