import os import random import sys from typing import Sequence, Mapping, Any, Union import torch import gradio as gr from PIL import Image import numpy as np from huggingface_hub import hf_hub_download import spaces from comfy import model_management # Download required models t5_path = hf_hub_download(repo_id="comfyanonymous/flux_text_encoders", filename="t5xxl_fp8_e4m3fn.safetensors", local_dir="models/text_encoders/") vae_path = hf_hub_download(repo_id="lodestones/Chroma", filename="ae.safetensors", local_dir="models/vae") unet_path = hf_hub_download(repo_id="lodestones/Chroma", filename="chroma-unlocked-v31.safetensors", local_dir="models/unet") # Utility functions def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any: try: return obj[index] except KeyError: return obj["result"][index] def find_path(name: str, path: str = None) -> str: if path is None: path = os.getcwd() if name in os.listdir(path): path_name = os.path.join(path, name) print(f"{name} found: {path_name}") return path_name parent_directory = os.path.dirname(path) if parent_directory == path: return None return find_path(name, parent_directory) def add_comfyui_directory_to_sys_path() -> None: comfyui_path = find_path("ComfyUI") if comfyui_path is not None and os.path.isdir(comfyui_path): sys.path.append(comfyui_path) print(f"'{comfyui_path}' added to sys.path") def add_extra_model_paths() -> None: try: from main import load_extra_path_config except ImportError: from utils.extra_config import load_extra_path_config extra_model_paths = find_path("extra_model_paths.yaml") if extra_model_paths is not None: load_extra_path_config(extra_model_paths) else: print("Could not find the extra_model_paths config file.") def import_custom_nodes() -> None: import asyncio import execution from nodes import init_extra_nodes import server loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) server_instance = server.PromptServer(loop) execution.PromptQueue(server_instance) init_extra_nodes() # Initialize paths add_comfyui_directory_to_sys_path() add_extra_model_paths() import_custom_nodes() # Import all necessary nodes from nodes import ( NODE_CLASS_MAPPINGS, CLIPTextEncode, CLIPLoader, VAEDecode, UNETLoader, VAELoader, SaveImage, ) # Initialize all model loaders outside the function randomnoise = NODE_CLASS_MAPPINGS["RandomNoise"]() emptysd3latentimage = NODE_CLASS_MAPPINGS["EmptySD3LatentImage"]() ksamplerselect = NODE_CLASS_MAPPINGS["KSamplerSelect"]() cliploader = CLIPLoader() t5tokenizeroptions = NODE_CLASS_MAPPINGS["T5TokenizerOptions"]() cliptextencode = CLIPTextEncode() unetloader = UNETLoader() vaeloader = VAELoader() cfgguider = NODE_CLASS_MAPPINGS["CFGGuider"]() basicscheduler = NODE_CLASS_MAPPINGS["BasicScheduler"]() samplercustomadvanced = NODE_CLASS_MAPPINGS["SamplerCustomAdvanced"]() vaedecode = VAEDecode() saveimage = SaveImage() # Load models cliploader_78 = cliploader.load_clip( clip_name="t5xxl_fp8_e4m3fn.safetensors", type="chroma", device="default" ) t5tokenizeroptions_82 = t5tokenizeroptions.set_options( min_padding=1, min_length=0, clip=get_value_at_index(cliploader_78, 0) ) unetloader_76 = unetloader.load_unet( unet_name="chroma-unlocked-v31.safetensors", weight_dtype="fp8_e4m3fn" ) vaeloader_80 = vaeloader.load_vae(vae_name="ae.safetensors") # Add all the models that load a safetensors file model_loaders = [cliploader_78, unetloader_76, vaeloader_80] # Check which models are valid and how to best load them valid_models = [ getattr(loader[0], 'patcher', loader[0]) for loader in model_loaders if not isinstance(loader[0], dict) and not isinstance(getattr(loader[0], 'patcher', None), dict) ] # Finally loads the models model_management.load_models_gpu(valid_models) @spaces.GPU def generate_image(prompt, negative_prompt, width, height, steps, cfg, seed): with torch.inference_mode(): # Set random seed if provided if seed == -1: seed = random.randint(1, 2**64) random.seed(seed) randomnoise_68 = randomnoise.get_noise(noise_seed=seed) emptysd3latentimage_69 = emptysd3latentimage.generate( width=width, height=height, batch_size=1 ) ksamplerselect_72 = ksamplerselect.get_sampler(sampler_name="euler") cliptextencode_74 = cliptextencode.encode( text=prompt, clip=get_value_at_index(t5tokenizeroptions_82, 0), ) cliptextencode_75 = cliptextencode.encode( text=negative_prompt, clip=get_value_at_index(t5tokenizeroptions_82, 0), ) cfgguider_73 = cfgguider.get_guider( cfg=cfg, model=get_value_at_index(unetloader_76, 0), positive=get_value_at_index(cliptextencode_74, 0), negative=get_value_at_index(cliptextencode_75, 0), ) basicscheduler_84 = basicscheduler.get_sigmas( scheduler="beta", steps=steps, denoise=1, model=get_value_at_index(unetloader_76, 0), ) samplercustomadvanced_67 = samplercustomadvanced.sample( noise=get_value_at_index(randomnoise_68, 0), guider=get_value_at_index(cfgguider_73, 0), sampler=get_value_at_index(ksamplerselect_72, 0), sigmas=get_value_at_index(basicscheduler_84, 0), latent_image=get_value_at_index(emptysd3latentimage_69, 0), ) vaedecode_79 = vaedecode.decode( samples=get_value_at_index(samplercustomadvanced_67, 0), vae=get_value_at_index(vaeloader_80, 0), ) # Save image using SaveImage node with simple string prefix saved = saveimage.save_images( filename_prefix="Chroma_Generated", images=get_value_at_index(vaedecode_79, 0), ) # Return the path to the saved image saved_path = f"output/{saved['ui']['images'][0]['filename']}" return saved_path # Create Gradio interface with gr.Blocks() as app: gr.Markdown(""" # Chroma Model: [Chroma](https://huggingface.co/lodestones/Chroma) by [lodestones](https://huggingface.co/lodestones) Run any ComfyUI Workflow on Spaces: [ComfyUI Workflows](https://huggingface.co/blog/run-comfyui-workflows-on-spaces) Space Author: [GitHub](https://github.com/gokayfem) | [X.com](https://x.com/gokayfem) """) with gr.Row(): with gr.Column(): prompt = gr.Textbox( label="Prompt", placeholder="Enter your prompt here...", lines=3 ) negative_prompt = gr.Textbox( label="Negative Prompt", placeholder="Enter negative prompt here...", value="low quality, ugly, unfinished, out of focus, deformed, disfigure, blurry, smudged, restricted palette, flat colors", lines=2 ) with gr.Row(): width = gr.Slider( minimum=512, maximum=2048, value=1024, step=64, label="Width" ) height = gr.Slider( minimum=512, maximum=2048, value=1024, step=64, label="Height" ) with gr.Row(): steps = gr.Slider( minimum=1, maximum=50, value=26, step=1, label="Steps" ) cfg = gr.Slider( minimum=1, maximum=20, value=4, step=0.5, label="CFG Scale" ) seed = gr.Number( value=-1, label="Seed (-1 for random)" ) generate_btn = gr.Button("Generate") with gr.Column(): output_image = gr.Image(label="Generated Image") generate_btn.click( fn=generate_image, inputs=[prompt, negative_prompt, width, height, steps, cfg, seed], outputs=[output_image] ) if __name__ == "__main__": app.launch(share=True)