import os import random import sys from typing import Sequence, Mapping, Any, Union import torch import gradio as gr from huggingface_hub import hf_hub_download # Download required models t5_path = hf_hub_download(repo_id="comfyanonymous/flux_text_encoders", filename="t5xxl_fp8_e4m3fn.safetensors", local_dir="models/text_encoders/") vae_path = hf_hub_download(repo_id="black-forest-labs/FLUX.1-dev", filename="ae.safetensors", local_dir="models/vae") unet_path = hf_hub_download(repo_id="lodestones/Chroma", filename="chroma-unlocked-v31.safetensors", local_dir="models/unet") # Import the workflow functions from my_workflow import ( get_value_at_index, add_comfyui_directory_to_sys_path, add_extra_model_paths, import_custom_nodes, NODE_CLASS_MAPPINGS, CLIPTextEncode, CLIPLoader, VAEDecode, UNETLoader, VAELoader, SaveImage, ) # Initialize ComfyUI add_comfyui_directory_to_sys_path() add_extra_model_paths() import_custom_nodes() def generate_image(prompt, negative_prompt, width, height, steps, cfg, seed): with torch.inference_mode(): # Set random seed if provided if seed == -1: seed = random.randint(1, 2**64) random.seed(seed) randomnoise = NODE_CLASS_MAPPINGS["RandomNoise"]() randomnoise_68 = randomnoise.get_noise(noise_seed=seed) emptysd3latentimage = NODE_CLASS_MAPPINGS["EmptySD3LatentImage"]() emptysd3latentimage_69 = emptysd3latentimage.generate( width=width, height=height, batch_size=1 ) ksamplerselect = NODE_CLASS_MAPPINGS["KSamplerSelect"]() ksamplerselect_72 = ksamplerselect.get_sampler(sampler_name="euler") cliploader = CLIPLoader() cliploader_78 = cliploader.load_clip( clip_name="t5xxl_fp8_e4m3fn.safetensors", type="chroma", device="default" ) t5tokenizeroptions = NODE_CLASS_MAPPINGS["T5TokenizerOptions"]() t5tokenizeroptions_82 = t5tokenizeroptions.set_options( min_padding=1, min_length=0, clip=get_value_at_index(cliploader_78, 0) ) cliptextencode = CLIPTextEncode() cliptextencode_74 = cliptextencode.encode( text=prompt, clip=get_value_at_index(t5tokenizeroptions_82, 0), ) cliptextencode_75 = cliptextencode.encode( text=negative_prompt, clip=get_value_at_index(t5tokenizeroptions_82, 0), ) unetloader = UNETLoader() unetloader_76 = unetloader.load_unet( unet_name="chroma-unlocked-v31.safetensors", weight_dtype="fp8_e4m3fn" ) vaeloader = VAELoader() vaeloader_80 = vaeloader.load_vae(vae_name="ae.safetensors") cfgguider = NODE_CLASS_MAPPINGS["CFGGuider"]() basicscheduler = NODE_CLASS_MAPPINGS["BasicScheduler"]() samplercustomadvanced = NODE_CLASS_MAPPINGS["SamplerCustomAdvanced"]() vaedecode = VAEDecode() saveimage = SaveImage() cfgguider_73 = cfgguider.get_guider( cfg=cfg, model=get_value_at_index(unetloader_76, 0), positive=get_value_at_index(cliptextencode_74, 0), negative=get_value_at_index(cliptextencode_75, 0), ) basicscheduler_84 = basicscheduler.get_sigmas( scheduler="beta", steps=steps, denoise=1, model=get_value_at_index(unetloader_76, 0), ) samplercustomadvanced_67 = samplercustomadvanced.sample( noise=get_value_at_index(randomnoise_68, 0), guider=get_value_at_index(cfgguider_73, 0), sampler=get_value_at_index(ksamplerselect_72, 0), sigmas=get_value_at_index(basicscheduler_84, 0), latent_image=get_value_at_index(emptysd3latentimage_69, 0), ) vaedecode_79 = vaedecode.decode( samples=get_value_at_index(samplercustomadvanced_67, 0), vae=get_value_at_index(vaeloader_80, 0), ) # Instead of saving to file, return the image directly return get_value_at_index(vaedecode_79, 0) # Create Gradio interface with gr.Blocks() as app: gr.Markdown("# Chroma Image Generator") with gr.Row(): with gr.Column(): prompt = gr.Textbox( label="Prompt", placeholder="Enter your prompt here...", lines=3 ) negative_prompt = gr.Textbox( label="Negative Prompt", placeholder="Enter negative prompt here...", value="low quality, ugly, unfinished, out of focus, deformed, disfigure, blurry, smudged, restricted palette, flat colors", lines=2 ) with gr.Row(): width = gr.Slider( minimum=512, maximum=2048, value=1024, step=64, label="Width" ) height = gr.Slider( minimum=512, maximum=2048, value=1024, step=64, label="Height" ) with gr.Row(): steps = gr.Slider( minimum=1, maximum=50, value=26, step=1, label="Steps" ) cfg = gr.Slider( minimum=1, maximum=20, value=4, step=0.5, label="CFG Scale" ) seed = gr.Number( value=-1, label="Seed (-1 for random)" ) generate_btn = gr.Button("Generate") with gr.Column(): output_image = gr.Image(label="Generated Image") generate_btn.click( fn=generate_image, inputs=[prompt, negative_prompt, width, height, steps, cfg, seed], outputs=[output_image] ) if __name__ == "__main__": app.launch(share=True)