Update app.py
Browse files
app.py
CHANGED
|
@@ -18,22 +18,18 @@ from io import BytesIO
|
|
| 18 |
from PIL import Image
|
| 19 |
import numpy as np
|
| 20 |
|
| 21 |
-
# Configuración de dimensiones mínimas para las imágenes
|
| 22 |
MIN_WIDTH = 1920
|
| 23 |
MIN_HEIGHT = 1080
|
| 24 |
TARGET_ASPECT_RATIO = 16/9
|
| 25 |
|
| 26 |
-
# Define output and temp directories
|
| 27 |
output_folder = "outputs"
|
| 28 |
temp_dir = "temp_files"
|
| 29 |
os.makedirs(output_folder, exist_ok=True)
|
| 30 |
os.makedirs(temp_dir, exist_ok=True)
|
| 31 |
|
| 32 |
-
# Google Drive folder ID
|
| 33 |
FOLDER_ID = "12S6adpanAXjf71pKKGRRPqpzbJa5XEh3"
|
| 34 |
|
| 35 |
def load_proxies(proxy_file="proxys.txt"):
|
| 36 |
-
"""Load proxies from a text file."""
|
| 37 |
try:
|
| 38 |
with open(proxy_file, 'r') as f:
|
| 39 |
proxies = [line.strip() for line in f if line.strip()]
|
|
@@ -44,7 +40,6 @@ def load_proxies(proxy_file="proxys.txt"):
|
|
| 44 |
return []
|
| 45 |
|
| 46 |
def cleanup_temp_files():
|
| 47 |
-
"""Delete all temporary files from the temp_files folder."""
|
| 48 |
for filename in os.listdir(temp_dir):
|
| 49 |
file_path = os.path.join(temp_dir, filename)
|
| 50 |
try:
|
|
@@ -54,7 +49,6 @@ def cleanup_temp_files():
|
|
| 54 |
print(f"Error deleting {file_path}: {e}")
|
| 55 |
|
| 56 |
def search_google_images(query, num_images=1):
|
| 57 |
-
"""Search for images using Google Custom Search API with size requirements."""
|
| 58 |
try:
|
| 59 |
api_key = os.getenv('GOOGLE_API_KEY')
|
| 60 |
cse_id = os.getenv('GOOGLE_CSE_ID')
|
|
@@ -76,16 +70,15 @@ def search_google_images(query, num_images=1):
|
|
| 76 |
service._http.http = session
|
| 77 |
print(f"Trying with proxy: {proxy['http']}")
|
| 78 |
|
| 79 |
-
# Especificar parámetros de búsqueda para imágenes grandes
|
| 80 |
result = service.cse().list(
|
| 81 |
q=query,
|
| 82 |
cx=cse_id,
|
| 83 |
searchType="image",
|
| 84 |
-
num=num_images * 3,
|
| 85 |
safe='off',
|
| 86 |
-
imgSize='huge',
|
| 87 |
-
imgType='photo',
|
| 88 |
-
rights='cc_publicdomain|cc_attribute|cc_sharealike'
|
| 89 |
).execute()
|
| 90 |
|
| 91 |
if 'items' in result:
|
|
@@ -116,43 +109,30 @@ def search_google_images(query, num_images=1):
|
|
| 116 |
return []
|
| 117 |
|
| 118 |
def process_image(image):
|
| 119 |
-
"""Process and resize image to meet minimum requirements."""
|
| 120 |
try:
|
| 121 |
-
# Obtener dimensiones actuales
|
| 122 |
width, height = image.size
|
| 123 |
-
|
| 124 |
-
# Calcular relación de aspecto actual
|
| 125 |
current_ratio = width / height
|
| 126 |
|
| 127 |
-
# Determinar nuevas dimensiones manteniendo relación 16:9
|
| 128 |
if current_ratio > TARGET_ASPECT_RATIO:
|
| 129 |
-
# Imagen más ancha que 16:9
|
| 130 |
new_width = max(MIN_WIDTH, width)
|
| 131 |
new_height = int(new_width / TARGET_ASPECT_RATIO)
|
| 132 |
else:
|
| 133 |
-
# Imagen más alta que 16:9
|
| 134 |
new_height = max(MIN_HEIGHT, height)
|
| 135 |
new_width = int(new_height * TARGET_ASPECT_RATIO)
|
| 136 |
|
| 137 |
-
# Redimensionar imagen
|
| 138 |
image = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
|
|
|
|
| 139 |
|
| 140 |
-
# Crear fondo negro del tamaño objetivo
|
| 141 |
-
background = Image.new('RGB', (MAX(new_width, MIN_WIDTH), MAX(new_height, MIN_HEIGHT)), 'black')
|
| 142 |
-
|
| 143 |
-
# Centrar imagen en el fondo
|
| 144 |
offset = ((background.width - image.width) // 2,
|
| 145 |
(background.height - image.height) // 2)
|
| 146 |
background.paste(image, offset)
|
| 147 |
|
| 148 |
return background
|
| 149 |
-
|
| 150 |
except Exception as e:
|
| 151 |
print(f"Error processing image: {e}")
|
| 152 |
return None
|
| 153 |
|
| 154 |
def download_image(url):
|
| 155 |
-
"""Download and process image from URL using proxies."""
|
| 156 |
proxies = load_proxies()
|
| 157 |
if not proxies:
|
| 158 |
proxies = [None]
|
|
@@ -162,13 +142,11 @@ def download_image(url):
|
|
| 162 |
response = requests.get(url, proxies=proxy, timeout=10)
|
| 163 |
image = Image.open(BytesIO(response.content))
|
| 164 |
|
| 165 |
-
# Convertir a RGB si es necesario
|
| 166 |
if image.mode in ('RGBA', 'LA') or (image.mode == 'P' and 'transparency' in image.info):
|
| 167 |
background = Image.new('RGB', image.size, (0, 0, 0))
|
| 168 |
background.paste(image, mask=image.split()[-1])
|
| 169 |
image = background
|
| 170 |
|
| 171 |
-
# Procesar imagen para cumplir requisitos de tamaño
|
| 172 |
processed_image = process_image(image)
|
| 173 |
if processed_image:
|
| 174 |
return processed_image
|
|
@@ -179,18 +157,15 @@ def download_image(url):
|
|
| 179 |
return None
|
| 180 |
|
| 181 |
def create_animated_clip(image, duration=5, zoom_factor=1.1):
|
| 182 |
-
"""Create an animated clip from a still image with a zoom effect."""
|
| 183 |
img_array = np.array(image)
|
| 184 |
img_clip = ImageClip(img_array).set_duration(duration)
|
| 185 |
|
| 186 |
-
# Asegurar que el clip tenga el tamaño correcto
|
| 187 |
if img_clip.size[0] < MIN_WIDTH or img_clip.size[1] < MIN_HEIGHT:
|
| 188 |
img_clip = img_clip.resize(width=MIN_WIDTH, height=MIN_HEIGHT)
|
| 189 |
|
| 190 |
return img_clip.resize(lambda t: 1 + (zoom_factor - 1) * t / duration)
|
| 191 |
|
| 192 |
def concatenate_google_images(keywords, clip_duration=5, num_images_per_keyword=1):
|
| 193 |
-
"""Concatenate Google Images based on keywords."""
|
| 194 |
keyword_list = [keyword.strip() for keyword in keywords.split(",") if keyword.strip()]
|
| 195 |
if not keyword_list:
|
| 196 |
keyword_list = ["nature"]
|
|
@@ -216,9 +191,115 @@ def concatenate_google_images(keywords, clip_duration=5, num_images_per_keyword=
|
|
| 216 |
random.shuffle(video_clips)
|
| 217 |
return concatenate_videoclips(video_clips, method="compose")
|
| 218 |
|
| 219 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 220 |
|
| 221 |
-
# Gradio interface
|
| 222 |
with gr.Blocks() as demo:
|
| 223 |
gr.Markdown("# Text-to-Video Generator")
|
| 224 |
with gr.Row():
|
|
@@ -228,7 +309,7 @@ with gr.Blocks() as demo:
|
|
| 228 |
mp3_file_input = gr.File(label="Upload background music (.mp3)", file_types=[".mp3"])
|
| 229 |
keyword_input = gr.Textbox(
|
| 230 |
label="Enter keywords separated by commas",
|
| 231 |
-
value="fear, religion, god, demons, aliens, possession, galaxy, mysterious"
|
| 232 |
)
|
| 233 |
voices = asyncio.run(get_voices())
|
| 234 |
voice_dropdown = gr.Dropdown(choices=list(voices.keys()), label="Select Voice")
|
|
|
|
| 18 |
from PIL import Image
|
| 19 |
import numpy as np
|
| 20 |
|
|
|
|
| 21 |
MIN_WIDTH = 1920
|
| 22 |
MIN_HEIGHT = 1080
|
| 23 |
TARGET_ASPECT_RATIO = 16/9
|
| 24 |
|
|
|
|
| 25 |
output_folder = "outputs"
|
| 26 |
temp_dir = "temp_files"
|
| 27 |
os.makedirs(output_folder, exist_ok=True)
|
| 28 |
os.makedirs(temp_dir, exist_ok=True)
|
| 29 |
|
|
|
|
| 30 |
FOLDER_ID = "12S6adpanAXjf71pKKGRRPqpzbJa5XEh3"
|
| 31 |
|
| 32 |
def load_proxies(proxy_file="proxys.txt"):
|
|
|
|
| 33 |
try:
|
| 34 |
with open(proxy_file, 'r') as f:
|
| 35 |
proxies = [line.strip() for line in f if line.strip()]
|
|
|
|
| 40 |
return []
|
| 41 |
|
| 42 |
def cleanup_temp_files():
|
|
|
|
| 43 |
for filename in os.listdir(temp_dir):
|
| 44 |
file_path = os.path.join(temp_dir, filename)
|
| 45 |
try:
|
|
|
|
| 49 |
print(f"Error deleting {file_path}: {e}")
|
| 50 |
|
| 51 |
def search_google_images(query, num_images=1):
|
|
|
|
| 52 |
try:
|
| 53 |
api_key = os.getenv('GOOGLE_API_KEY')
|
| 54 |
cse_id = os.getenv('GOOGLE_CSE_ID')
|
|
|
|
| 70 |
service._http.http = session
|
| 71 |
print(f"Trying with proxy: {proxy['http']}")
|
| 72 |
|
|
|
|
| 73 |
result = service.cse().list(
|
| 74 |
q=query,
|
| 75 |
cx=cse_id,
|
| 76 |
searchType="image",
|
| 77 |
+
num=num_images * 3,
|
| 78 |
safe='off',
|
| 79 |
+
imgSize='huge',
|
| 80 |
+
imgType='photo',
|
| 81 |
+
rights='cc_publicdomain|cc_attribute|cc_sharealike'
|
| 82 |
).execute()
|
| 83 |
|
| 84 |
if 'items' in result:
|
|
|
|
| 109 |
return []
|
| 110 |
|
| 111 |
def process_image(image):
|
|
|
|
| 112 |
try:
|
|
|
|
| 113 |
width, height = image.size
|
|
|
|
|
|
|
| 114 |
current_ratio = width / height
|
| 115 |
|
|
|
|
| 116 |
if current_ratio > TARGET_ASPECT_RATIO:
|
|
|
|
| 117 |
new_width = max(MIN_WIDTH, width)
|
| 118 |
new_height = int(new_width / TARGET_ASPECT_RATIO)
|
| 119 |
else:
|
|
|
|
| 120 |
new_height = max(MIN_HEIGHT, height)
|
| 121 |
new_width = int(new_height * TARGET_ASPECT_RATIO)
|
| 122 |
|
|
|
|
| 123 |
image = image.resize((new_width, new_height), Image.Resampling.LANCZOS)
|
| 124 |
+
background = Image.new('RGB', (max(new_width, MIN_WIDTH), max(new_height, MIN_HEIGHT)), 'black')
|
| 125 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 126 |
offset = ((background.width - image.width) // 2,
|
| 127 |
(background.height - image.height) // 2)
|
| 128 |
background.paste(image, offset)
|
| 129 |
|
| 130 |
return background
|
|
|
|
| 131 |
except Exception as e:
|
| 132 |
print(f"Error processing image: {e}")
|
| 133 |
return None
|
| 134 |
|
| 135 |
def download_image(url):
|
|
|
|
| 136 |
proxies = load_proxies()
|
| 137 |
if not proxies:
|
| 138 |
proxies = [None]
|
|
|
|
| 142 |
response = requests.get(url, proxies=proxy, timeout=10)
|
| 143 |
image = Image.open(BytesIO(response.content))
|
| 144 |
|
|
|
|
| 145 |
if image.mode in ('RGBA', 'LA') or (image.mode == 'P' and 'transparency' in image.info):
|
| 146 |
background = Image.new('RGB', image.size, (0, 0, 0))
|
| 147 |
background.paste(image, mask=image.split()[-1])
|
| 148 |
image = background
|
| 149 |
|
|
|
|
| 150 |
processed_image = process_image(image)
|
| 151 |
if processed_image:
|
| 152 |
return processed_image
|
|
|
|
| 157 |
return None
|
| 158 |
|
| 159 |
def create_animated_clip(image, duration=5, zoom_factor=1.1):
|
|
|
|
| 160 |
img_array = np.array(image)
|
| 161 |
img_clip = ImageClip(img_array).set_duration(duration)
|
| 162 |
|
|
|
|
| 163 |
if img_clip.size[0] < MIN_WIDTH or img_clip.size[1] < MIN_HEIGHT:
|
| 164 |
img_clip = img_clip.resize(width=MIN_WIDTH, height=MIN_HEIGHT)
|
| 165 |
|
| 166 |
return img_clip.resize(lambda t: 1 + (zoom_factor - 1) * t / duration)
|
| 167 |
|
| 168 |
def concatenate_google_images(keywords, clip_duration=5, num_images_per_keyword=1):
|
|
|
|
| 169 |
keyword_list = [keyword.strip() for keyword in keywords.split(",") if keyword.strip()]
|
| 170 |
if not keyword_list:
|
| 171 |
keyword_list = ["nature"]
|
|
|
|
| 191 |
random.shuffle(video_clips)
|
| 192 |
return concatenate_videoclips(video_clips, method="compose")
|
| 193 |
|
| 194 |
+
def adjust_background_music(video_duration, music_file):
|
| 195 |
+
try:
|
| 196 |
+
music = AudioFileClip(music_file)
|
| 197 |
+
if music.duration < video_duration:
|
| 198 |
+
repetitions = int(video_duration / music.duration) + 1
|
| 199 |
+
music_clips = [music] * repetitions
|
| 200 |
+
music = concatenate_audioclips(music_clips)
|
| 201 |
+
music = music.subclip(0, video_duration)
|
| 202 |
+
return music.volumex(0.2)
|
| 203 |
+
except Exception as e:
|
| 204 |
+
print(f"Error adjusting music: {e}")
|
| 205 |
+
return None
|
| 206 |
+
|
| 207 |
+
def combine_audio_video(audio_file, video_clip, music_clip=None):
|
| 208 |
+
try:
|
| 209 |
+
audio_clip = AudioFileClip(audio_file)
|
| 210 |
+
total_duration = audio_clip.duration + 2
|
| 211 |
+
|
| 212 |
+
video_clip = video_clip.loop(duration=total_duration)
|
| 213 |
+
video_clip = video_clip.set_duration(total_duration).fadeout(2)
|
| 214 |
+
|
| 215 |
+
final_clip = video_clip.set_audio(audio_clip)
|
| 216 |
+
if music_clip:
|
| 217 |
+
music_clip = music_clip.set_duration(total_duration).audio_fadeout(2)
|
| 218 |
+
final_clip = final_clip.set_audio(CompositeAudioClip([audio_clip, music_clip]))
|
| 219 |
+
|
| 220 |
+
output_filename = f"final_video_{int(time.time())}.mp4"
|
| 221 |
+
output_path = os.path.join(output_folder, output_filename)
|
| 222 |
+
|
| 223 |
+
final_clip.write_videofile(output_path, codec="libx264", audio_codec="aac", fps=24)
|
| 224 |
+
|
| 225 |
+
final_clip.close()
|
| 226 |
+
video_clip.close()
|
| 227 |
+
audio_clip.close()
|
| 228 |
+
if music_clip:
|
| 229 |
+
music_clip.close()
|
| 230 |
+
|
| 231 |
+
return output_path
|
| 232 |
+
except Exception as e:
|
| 233 |
+
print(f"Error combining audio and video: {e}")
|
| 234 |
+
if 'final_clip' in locals():
|
| 235 |
+
final_clip.close()
|
| 236 |
+
return None
|
| 237 |
+
|
| 238 |
+
def upload_to_google_drive(file_path, folder_id):
|
| 239 |
+
try:
|
| 240 |
+
creds = service_account.Credentials.from_service_account_info(
|
| 241 |
+
json.loads(os.getenv('GOOGLE_SERVICE_ACCOUNT')),
|
| 242 |
+
scopes=['https://www.googleapis.com/auth/drive']
|
| 243 |
+
)
|
| 244 |
+
service = build('drive', 'v3', credentials=creds)
|
| 245 |
+
|
| 246 |
+
file_metadata = {
|
| 247 |
+
'name': os.path.basename(file_path),
|
| 248 |
+
'parents': [folder_id]
|
| 249 |
+
}
|
| 250 |
+
media = MediaFileUpload(file_path, resumable=True)
|
| 251 |
+
file = service.files().create(body=file_metadata, media_body=media, fields='id').execute()
|
| 252 |
+
|
| 253 |
+
permission = {
|
| 254 |
+
'type': 'anyone',
|
| 255 |
+
'role': 'reader'
|
| 256 |
+
}
|
| 257 |
+
service.permissions().create(fileId=file['id'], body=permission).execute()
|
| 258 |
+
|
| 259 |
+
file_id = file['id']
|
| 260 |
+
download_link = f"https://drive.google.com/uc?export=download&id={file_id}"
|
| 261 |
+
return download_link
|
| 262 |
+
except Exception as e:
|
| 263 |
+
print(f"Error uploading to Google Drive: {e}")
|
| 264 |
+
return None
|
| 265 |
+
|
| 266 |
+
def process_input(text, txt_file, mp3_file, selected_voice, rate, pitch, keywords):
|
| 267 |
+
try:
|
| 268 |
+
if text.strip():
|
| 269 |
+
final_text = text
|
| 270 |
+
elif txt_file is not None:
|
| 271 |
+
final_text = txt_file.decode("utf-8")
|
| 272 |
+
else:
|
| 273 |
+
raise ValueError("No text input provided")
|
| 274 |
+
|
| 275 |
+
audio_file = asyncio.run(text_to_speech(final_text, selected_voice, rate, pitch))
|
| 276 |
+
if not audio_file:
|
| 277 |
+
raise ValueError("Failed to generate audio")
|
| 278 |
+
|
| 279 |
+
video_clip = concatenate_google_images(keywords, clip_duration=5, num_images_per_keyword=1)
|
| 280 |
+
if not video_clip:
|
| 281 |
+
raise ValueError("Failed to generate video")
|
| 282 |
+
|
| 283 |
+
music_clip = None
|
| 284 |
+
if mp3_file is not None:
|
| 285 |
+
music_clip = adjust_background_music(video_clip.duration, mp3_file.name)
|
| 286 |
+
|
| 287 |
+
final_video_path = combine_audio_video(audio_file, video_clip, music_clip)
|
| 288 |
+
if not final_video_path:
|
| 289 |
+
raise ValueError("Failed to combine audio and video")
|
| 290 |
+
|
| 291 |
+
download_link = upload_to_google_drive(final_video_path, folder_id=FOLDER_ID)
|
| 292 |
+
if download_link:
|
| 293 |
+
print(f"Video uploaded to Google Drive. Download link: {download_link}")
|
| 294 |
+
return f"[Download video]({download_link})"
|
| 295 |
+
else:
|
| 296 |
+
raise ValueError("Error uploading video to Google Drive")
|
| 297 |
+
except Exception as e:
|
| 298 |
+
print(f"Error during processing: {e}")
|
| 299 |
+
return None
|
| 300 |
+
finally:
|
| 301 |
+
cleanup_temp_files()
|
| 302 |
|
|
|
|
| 303 |
with gr.Blocks() as demo:
|
| 304 |
gr.Markdown("# Text-to-Video Generator")
|
| 305 |
with gr.Row():
|
|
|
|
| 309 |
mp3_file_input = gr.File(label="Upload background music (.mp3)", file_types=[".mp3"])
|
| 310 |
keyword_input = gr.Textbox(
|
| 311 |
label="Enter keywords separated by commas",
|
| 312 |
+
value="fear, religion, god, demons, aliens, possession, galaxy, mysterious, dystopian, astral, warfare, space, space, galaxy, moon, fear, astral, god, evil, mystery, cosmos, stars, paranormal, inexplicable, hidden, enigma, unknown, unusual, intriguing, curious, strange, supernatural, esoteric, arcane, occultism, supernatural, mystery, phenomenon, rare, unusual, enigmatic, sinister, gloomy, dark, shadowy, macabre, eerie, chilling, cursed, fantastic, unreal, unknown, mysterious, enigmatic, inexplicable, unusual, strange, unusual, arcane, esoteric, hidden, shadowy, dark, gloomy, sinister, macabre, eerie, chilling, cursed, fantastic, unreal, paranormal, supernatural, occultism, phenomenon, rare, intriguing, curious"
|
| 313 |
)
|
| 314 |
voices = asyncio.run(get_voices())
|
| 315 |
voice_dropdown = gr.Dropdown(choices=list(voices.keys()), label="Select Voice")
|