Spaces:
Runtime error
Runtime error
| import torch | |
| from torch import nn | |
| from torch.nn import functional as F | |
| class ChannelLastConv1d(nn.Conv1d): | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| x = x.permute(0, 2, 1) | |
| x = super().forward(x) | |
| x = x.permute(0, 2, 1) | |
| return x | |
| # https://github.com/Stability-AI/sd3-ref | |
| class MLP(nn.Module): | |
| def __init__( | |
| self, | |
| dim: int, | |
| hidden_dim: int, | |
| multiple_of: int = 256, | |
| ): | |
| """ | |
| Initialize the FeedForward module. | |
| Args: | |
| dim (int): Input dimension. | |
| hidden_dim (int): Hidden dimension of the feedforward layer. | |
| multiple_of (int): Value to ensure hidden dimension is a multiple of this value. | |
| Attributes: | |
| w1 (ColumnParallelLinear): Linear transformation for the first layer. | |
| w2 (RowParallelLinear): Linear transformation for the second layer. | |
| w3 (ColumnParallelLinear): Linear transformation for the third layer. | |
| """ | |
| super().__init__() | |
| hidden_dim = int(2 * hidden_dim / 3) | |
| hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of) | |
| self.w1 = nn.Linear(dim, hidden_dim, bias=False) | |
| self.w2 = nn.Linear(hidden_dim, dim, bias=False) | |
| self.w3 = nn.Linear(dim, hidden_dim, bias=False) | |
| def forward(self, x): | |
| return self.w2(F.silu(self.w1(x)) * self.w3(x)) | |
| class ConvMLP(nn.Module): | |
| def __init__( | |
| self, | |
| dim: int, | |
| hidden_dim: int, | |
| multiple_of: int = 256, | |
| kernel_size: int = 3, | |
| padding: int = 1, | |
| ): | |
| """ | |
| Initialize the FeedForward module. | |
| Args: | |
| dim (int): Input dimension. | |
| hidden_dim (int): Hidden dimension of the feedforward layer. | |
| multiple_of (int): Value to ensure hidden dimension is a multiple of this value. | |
| Attributes: | |
| w1 (ColumnParallelLinear): Linear transformation for the first layer. | |
| w2 (RowParallelLinear): Linear transformation for the second layer. | |
| w3 (ColumnParallelLinear): Linear transformation for the third layer. | |
| """ | |
| super().__init__() | |
| hidden_dim = int(2 * hidden_dim / 3) | |
| hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of) | |
| self.w1 = ChannelLastConv1d(dim, | |
| hidden_dim, | |
| bias=False, | |
| kernel_size=kernel_size, | |
| padding=padding) | |
| self.w2 = ChannelLastConv1d(hidden_dim, | |
| dim, | |
| bias=False, | |
| kernel_size=kernel_size, | |
| padding=padding) | |
| self.w3 = ChannelLastConv1d(dim, | |
| hidden_dim, | |
| bias=False, | |
| kernel_size=kernel_size, | |
| padding=padding) | |
| def forward(self, x): | |
| return self.w2(F.silu(self.w1(x)) * self.w3(x)) | |