gloignon commited on
Commit
c7f8f58
Β·
verified Β·
1 Parent(s): 4427153

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +30 -63
app.py CHANGED
@@ -1,67 +1,34 @@
 
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("deepseek-ai/deepseek-llm-7b-base")
8
- # Use a pipeline as a high-level helper
9
- #from transformers import pipeline
10
-
11
- #pipe = pipeline("text-generation", model="deepseek-ai/deepseek-llm-7b-base")
12
-
13
- def respond(
14
- message,
15
- history: list[tuple[str, str]],
16
- system_message,
17
- max_tokens,
18
- temperature,
19
- top_p,
20
- ):
21
- messages = [{"role": "system", "content": system_message}]
22
-
23
- for val in history:
24
- if val[0]:
25
- messages.append({"role": "user", "content": val[0]})
26
- if val[1]:
27
- messages.append({"role": "assistant", "content": val[1]})
28
-
29
- messages.append({"role": "user", "content": message})
30
-
31
- response = ""
32
-
33
- for message in client.chat_completion(
34
- messages,
35
- max_tokens=max_tokens,
36
- stream=True,
37
- temperature=temperature,
38
- top_p=top_p,
39
- ):
40
- token = message.choices[0].delta.content
41
-
42
- response += token
43
- yield response
44
-
45
-
46
- """
47
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
48
- """
49
- demo = gr.ChatInterface(
50
- respond,
51
- additional_inputs=[
52
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
53
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
54
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
55
- gr.Slider(
56
- minimum=0.1,
57
- maximum=1.0,
58
- value=0.95,
59
- step=0.05,
60
- label="Top-p (nucleus sampling)",
61
- ),
62
- ],
63
  )
64
 
65
-
66
- if __name__ == "__main__":
67
- demo.launch()
 
1
+ import torch
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
3
  import gradio as gr
 
4
 
5
+ # Load the model and tokenizer
6
+ model_name = "deepseek-ai/deepseek-llm-7b-base"
7
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
8
+ model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
9
+ model.generation_config = GenerationConfig.from_pretrained(model_name)
10
+ model.generation_config.pad_token_id = model.generation_config.eos_token_id
11
+
12
+ def generate_response(prompt):
13
+ # Tokenize the input prompt
14
+ inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
15
+
16
+ # Generate the response
17
+ outputs = model.generate(**inputs, max_new_tokens=100)
18
+
19
+ # Decode the generated tokens to a string
20
+ response = tokenizer.decode(outputs[0], skip_special_tokens=True)
21
+
22
+ return response
23
+
24
+ # Create a Gradio interface
25
+ iface = gr.Interface(
26
+ fn=generate_response, # Function to call
27
+ inputs="text", # Input type
28
+ outputs="text", # Output type
29
+ title="DeepSeek 7B Chat", # Title of the app
30
+ description="A simple chat interface for the DeepSeek 7B model."
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
31
  )
32
 
33
+ # Launch the app
34
+ iface.launch()