import pytest import pandas as pd import gradio as gr from validation import validate_csv_file, validate_csv_can_be_read, validate_dataframe from constants import REQUIRED_COLUMNS, MINIMAL_NUMBER_OF_ROWS class TestValidateCsvCanBeRead: """Test cases for validate_csv_can_be_read function""" def test_valid_csv_can_be_read(self, valid_csv_content): """Test that valid CSV content can be read""" df = validate_csv_can_be_read(valid_csv_content) assert isinstance(df, pd.DataFrame) assert len(df) == MINIMAL_NUMBER_OF_ROWS assert list(df.columns) == list(REQUIRED_COLUMNS) def test_empty_csv_raises_error(self): """Test that empty CSV raises an error""" empty_csv = "" with pytest.raises(gr.Error) as exc_info: validate_csv_can_be_read(empty_csv) assert "empty or contains no valid data" in str(exc_info.value) def test_invalid_csv_format_raises_error(self): """Test that invalid CSV format raises an error""" # Create a CSV with malformed structure that pandas cannot parse malformed_csv = 'column1,column2\nvalue1,"unclosed quote\nvalue4,value5' with pytest.raises(gr.Error) as exc_info: validate_csv_can_be_read(malformed_csv) assert "Invalid CSV format" in str(exc_info.value) def test_csv_with_quoted_fields_can_be_read(self): """Test that CSV with quoted fields can be read""" # Create CSV with quoted fields and enough rows base_row = 'AB001,"EVQLVESGGGLVQPGGSLRLSCAASGFTFSSYAMHWVRQAPGKGLEWVSAISGSGGSTYYADSVKGRFTISRDNSKNTLYLQMNSLRAEDTAVYYCARDYGDGYYFDYWGQGTLVTVSS","DIQMTQSPSSLSASVGDRVTITCRASQSISSYLNWYQQKPGKAPKLLIYAASTLQSGVPSRFSGSGSGTDFTLTISSLQPEDFATYYCQQSYSTPFTFGQGTKVEIK",95.2,0.85,0.92,0.78,0.81,72.5' csv_content = "antibody_id,vh_protein_sequence,vl_protein_sequence,SEC %Monomer,HIC,PR_CHO,AC-SINS_pH6.0,AC-SINS_pH7.4,Tm\n" csv_content += "\n".join([base_row] * MINIMAL_NUMBER_OF_ROWS) df = validate_csv_can_be_read(csv_content) assert isinstance(df, pd.DataFrame) assert len(df) == MINIMAL_NUMBER_OF_ROWS class TestValidateDataframe: """Test cases for validate_dataframe function""" def test_valid_dataframe_passes(self, valid_input_dataframe): """Test that valid DataFrame passes validation""" validate_dataframe(valid_input_dataframe) def test_missing_columns_raises_error(self, valid_input_dataframe): """Test that DataFrame with missing columns raises an error""" missing_column = REQUIRED_COLUMNS[0] df = valid_input_dataframe.copy() df.drop(columns=[missing_column], inplace=True) with pytest.raises(gr.Error) as exc_info: validate_dataframe(df) assert f"Missing required columns: {missing_column}" in str(exc_info.value) def test_empty_dataframe_raises_error(self, valid_input_dataframe): """Test that empty DataFrame raises an error""" empty_df = valid_input_dataframe.head(0) with pytest.raises(gr.Error) as exc_info: validate_dataframe(empty_df) assert "CSV file is empty" in str(exc_info.value) def test_insufficient_rows_raises_error(self, valid_input_dataframe): """Test that DataFrame with insufficient rows raises an error""" df = valid_input_dataframe.head(MINIMAL_NUMBER_OF_ROWS - 1) with pytest.raises(gr.Error) as exc_info: validate_dataframe(df) assert f"CSV should have at least {MINIMAL_NUMBER_OF_ROWS} rows" in str( exc_info.value ) def test_missing_values_raises_error(self, valid_input_dataframe): """Test that DataFrame with missing values raises an error""" bad_column = REQUIRED_COLUMNS[0] df = valid_input_dataframe.copy() df[bad_column] = [None] * len(df) with pytest.raises(gr.Error) as exc_info: validate_dataframe(df) assert f"contains {len(df)} missing values" in str(exc_info.value) def test_csv_with_extra_columns_passes(self, valid_input_dataframe): """Test that DataFrame with extra columns passes validation""" extra_column = "extra_column_1" df = valid_input_dataframe.copy() df[extra_column] = ["extra1"] * len(df) df[extra_column] = ["extra2"] * len(df) validate_dataframe(df) class TestValidateCsvFile: """Test cases for the combined validate_csv_file function""" def test_valid_csv_passes(self, valid_csv_content): """Test that a valid CSV with all required columns passes validation""" validate_csv_file(valid_csv_content)