abdev-leaderboard / validation.py
loodvanniekerkginkgo's picture
Double button working (it seems). Just need to adjust language on the
672339b
raw
history blame
9.35 kB
import pandas as pd
import io
import gradio as gr
import requests
from constants import (
REQUIRED_COLUMNS,
ASSAY_LIST,
CV_COLUMN,
SEQUENCES_FILE_DICT,
GDPa1_path,
)
from evaluation import evaluate
def validate_username(username: str) -> bool:
"""
Validate that the username corresponds to a real Hugging Face profile.
Just check https://huggingface.co/username exists.
Parameters
----------
username: str
The username to validate
Returns
-------
bool
True if the username is valid and profile exists, False otherwise
Raises
------
gr.Error: If username is invalid or profile doesn't exist
"""
username = username.strip()
if username == "":
raise gr.Error("❌ Please provide a username.")
# Check if the Hugging Face profile exists
profile_url = f"https://huggingface.co/{username}"
try:
response = requests.get(profile_url, timeout=10)
if response.status_code == 200:
# Additional check: make sure it's actually a user profile page
# and not some other page that happens to exist
if "profile" in response.text.lower() or "models" in response.text.lower():
return True
else:
raise gr.Error(
f"❌ '{username}' does not appear to be a valid Hugging Face user profile"
)
elif response.status_code == 404:
raise gr.Error(
f"❌ Hugging Face user '{username}' does not exist. Please check the username or create an account at https://huggingface.co. This is used to track unique submissions."
)
else:
raise gr.Error(
f"❌ Unable to verify username '{username}'. Please try again later."
)
except requests.exceptions.Timeout:
raise gr.Error("❌ Timeout while checking username. Please try again.")
except requests.exceptions.ConnectionError:
raise gr.Error(
"❌ Unable to connect to Hugging Face. Please check your internet connection."
)
except requests.exceptions.RequestException as e:
raise gr.Error(f"❌ Error validating username: {str(e)}")
def validate_csv_can_be_read(file_content: str) -> pd.DataFrame:
"""
Validate that the CSV file can be read and parsed.
Parameters
----------
file_content: str
The content of the uploaded CSV file.
Returns
-------
pd.DataFrame
The parsed DataFrame if successful.
Raises
------
gr.Error: If CSV cannot be read or parsed
"""
try:
# Read CSV content
df = pd.read_csv(io.StringIO(file_content))
return df
except pd.errors.EmptyDataError:
raise gr.Error("❌ CSV file is empty or contains no valid data")
except pd.errors.ParserError as e:
raise gr.Error(f"❌ Invalid CSV format<br><br>" f"Error: {str(e)}")
except UnicodeDecodeError:
raise gr.Error(
"❌ File encoding error<br><br>"
"Your file appears to have an unsupported encoding.<br>"
"Please save your CSV file with UTF-8 encoding and try again."
)
except Exception as e:
raise gr.Error(f"❌ Unexpected error reading CSV file: {str(e)}")
def validate_cv_submission(
df: pd.DataFrame, submission_type: str = "GDPa1_cross_validation"
) -> None:
"""Validate cross-validation submission"""
# Must have CV_COLUMN for CV submissions
if CV_COLUMN not in df.columns:
raise gr.Error(f"❌ CV submissions must include a '{CV_COLUMN}' column")
# Load canonical fold assignments
expected_cv_df = pd.read_csv(SEQUENCES_FILE_DICT[submission_type])[
["antibody_name", CV_COLUMN]
]
antibody_check = expected_cv_df.merge(
df[["antibody_name", CV_COLUMN]],
on="antibody_name",
how="left",
suffixes=("_expected", "_submitted"),
)
# CV fold assignments should match
fold_mismatches = antibody_check[
antibody_check[f"{CV_COLUMN}_expected"]
!= antibody_check[f"{CV_COLUMN}_submitted"]
]
if len(fold_mismatches) > 0:
examples = []
for _, row in fold_mismatches.head(3).iterrows():
examples.append(
f"{row['antibody_name']} (expected fold {row[f'{CV_COLUMN}_expected']}, got {row[f'{CV_COLUMN}_submitted']})"
)
raise gr.Error(
f"❌ Fold assignments don't match canonical CV folds: {'; '.join(examples)}"
)
def validate_full_dataset_submission(df: pd.DataFrame) -> None:
"""Validate full dataset submission"""
if CV_COLUMN in df.columns:
raise gr.Error(
f"❌ Your submission contains a '{CV_COLUMN}' column. "
"Please select 'Cross-Validation Predictions' if you want to submit CV results."
)
def get_assay_columns(df: pd.DataFrame) -> list[str]:
"""Get all assay columns from the DataFrame"""
return [col for col in df.columns if col in ASSAY_LIST]
def validate_dataframe(df: pd.DataFrame, submission_type: str = "GDPa1") -> None:
"""
Validate the DataFrame content and structure.
Parameters
----------
df: pd.DataFrame
The DataFrame to validate.
submission_type: str
Type of submission: "GDPa1" or "GDPa1_cross_validation"
Raises
------
gr.Error: If validation fails
"""
if submission_type not in SEQUENCES_FILE_DICT.keys():
raise ValueError(f"Invalid submission type: {submission_type}")
# Required columns should be present
missing_columns = set(REQUIRED_COLUMNS) - set(df.columns)
if missing_columns:
raise gr.Error(f"❌ Missing required columns: {', '.join(missing_columns)}")
# Should include at least 1 assay column
assay_columns = get_assay_columns(df)
if len(assay_columns) < 1:
raise gr.Error(
f"❌ CSV should include at least one of the following assay columns: {', '.join(ASSAY_LIST)}. Found columns: {', '.join(df.columns)}"
)
# Submission are name, sequence, and at least one assay column
submission_columns = REQUIRED_COLUMNS + assay_columns
# Data should not be empty
if df.empty:
raise gr.Error("❌ CSV file is empty")
# No missing values in submission columns
for col in submission_columns:
missing_count = df[col].isnull().sum()
if missing_count > 0:
raise gr.Error(f"❌ Column '{col}' contains {missing_count} missing values")
# All names should be unique
n_duplicates = df["antibody_name"].duplicated().sum()
if n_duplicates > 0:
raise gr.Error(
f"❌ CSV should have only one row per antibody. Found {n_duplicates} duplicates."
)
example_df = pd.read_csv(SEQUENCES_FILE_DICT[submission_type])
# All antibody names should be recognizable
unrecognized_antibodies = set(df["antibody_name"]) - set(
example_df["antibody_name"].tolist()
)
if unrecognized_antibodies:
raise gr.Error(
f"❌ Found unrecognized antibody names: {', '.join(unrecognized_antibodies)}"
)
# All antibody names should be present
# Note(Lood): Technically we could check that the antibodies are present just for the property that needs to be predicted
missing_antibodies = set(example_df["antibody_name"].tolist()) - set(
df["antibody_name"]
)
if missing_antibodies:
raise gr.Error(
f"❌ Missing predictions for {len(missing_antibodies)} antibodies: {', '.join(missing_antibodies)}"
)
# Submission-type specific validation
if submission_type.endswith("_cross_validation"):
validate_cv_submission(df, submission_type)
else: # full_dataset
validate_full_dataset_submission(df)
# Check Spearman correlations on public set
df_gdpa1 = pd.read_csv(GDPa1_path)
if submission_type in ["GDPa1", "GDPa1_cross_validation"]:
results_df = evaluate(
predictions_df=df, target_df=df_gdpa1, dataset_name=submission_type
)
# Check that the Spearman correlations are not too high
if results_df["spearman"].max() > 0.9:
raise gr.Error(
message="⚠️ Your submission shows abnormally high correlations (>0.9) on the public set. "
"Please check that you're not overfitting/don't have data leakage on the public set and are using cross-validation if training a new model.\n"
"This will result in a better model for eventually submitting to the heldout test set.\n"
"If you think this is a mistake, please contact [email protected].",
duration=30,
title="Data Leakage Warning",
)
def validate_csv_file(file_content: str, submission_type: str = "GDPa1") -> None:
"""
Validate the uploaded CSV file.
Parameters
----------
file_content: str
The content of the uploaded CSV file.
submission_type: str
Type of submission: "GDPa1" or "GDPa1_cross_validation"
Raises
------
gr.Error: If validation fails
"""
df = validate_csv_can_be_read(file_content)
validate_dataframe(df, submission_type)