Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,49 +1,80 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
import spaces
|
| 4 |
from duckduckgo_search import DDGS
|
| 5 |
import time
|
| 6 |
import torch
|
| 7 |
from datetime import datetime
|
| 8 |
-
import
|
| 9 |
-
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
model_name = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
|
| 12 |
-
|
| 13 |
-
# Load config first to set optimal parameters
|
| 14 |
-
config = AutoConfig.from_pretrained(model_name)
|
| 15 |
-
config.use_cache = True # Enable KV-caching for faster inference
|
| 16 |
-
|
| 17 |
-
# Initialize tokenizer with optimizations
|
| 18 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
| 19 |
-
model_name,
|
| 20 |
-
model_max_length=256, # Reduced for faster processing
|
| 21 |
-
padding_side="left",
|
| 22 |
-
truncation_side="left",
|
| 23 |
-
)
|
| 24 |
tokenizer.pad_token = tokenizer.eos_token
|
| 25 |
|
| 26 |
-
#
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
"""Get web search results using DuckDuckGo"""
|
| 41 |
try:
|
| 42 |
with DDGS() as ddgs:
|
| 43 |
results = list(ddgs.text(query, max_results=max_results))
|
| 44 |
return [{
|
| 45 |
"title": result.get("title", ""),
|
| 46 |
-
"snippet": result["body"]
|
| 47 |
"url": result["href"],
|
| 48 |
"date": result.get("published", "")
|
| 49 |
} for result in results]
|
|
@@ -51,10 +82,21 @@ def get_web_results(query, max_results=3): # Reduced max results
|
|
| 51 |
return []
|
| 52 |
|
| 53 |
def format_prompt(query, context):
|
| 54 |
-
"""Format the prompt with web context
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
return f"""Answer
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
def format_sources(web_results):
|
| 60 |
"""Format sources with more details"""
|
|
@@ -78,82 +120,155 @@ def format_sources(web_results):
|
|
| 78 |
sources_html += "</div>"
|
| 79 |
return sources_html
|
| 80 |
|
|
|
|
|
|
|
| 81 |
def generate_answer(prompt):
|
| 82 |
-
"""Generate answer using the DeepSeek model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
try:
|
| 84 |
-
#
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
padding=True,
|
| 93 |
-
truncation=True,
|
| 94 |
-
max_length=256,
|
| 95 |
-
return_attention_mask=True
|
| 96 |
-
)
|
| 97 |
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
|
| 113 |
-
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 114 |
-
return response.split('Answer:')[-1].strip()
|
| 115 |
-
|
| 116 |
except Exception as e:
|
| 117 |
-
|
|
|
|
|
|
|
|
|
|
| 118 |
|
| 119 |
-
def process_query(query, history):
|
| 120 |
-
"""Process user query with
|
| 121 |
try:
|
| 122 |
if history is None:
|
| 123 |
history = []
|
| 124 |
-
|
| 125 |
# Get web results first
|
| 126 |
web_results = get_web_results(query)
|
| 127 |
sources_html = format_sources(web_results)
|
| 128 |
|
| 129 |
-
|
| 130 |
yield {
|
| 131 |
-
answer_output: gr.Markdown("*Searching
|
| 132 |
sources_output: gr.HTML(sources_html),
|
| 133 |
-
search_btn: gr.Button("
|
| 134 |
-
chat_history_display:
|
|
|
|
| 135 |
}
|
| 136 |
|
| 137 |
-
# Generate answer
|
| 138 |
prompt = format_prompt(query, web_results)
|
| 139 |
answer = generate_answer(prompt)
|
|
|
|
| 140 |
|
| 141 |
-
#
|
| 142 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
yield {
|
| 144 |
-
answer_output: gr.Markdown(
|
| 145 |
sources_output: gr.HTML(sources_html),
|
| 146 |
search_btn: gr.Button("Search", interactive=True),
|
| 147 |
-
chat_history_display:
|
|
|
|
| 148 |
}
|
| 149 |
-
|
| 150 |
except Exception as e:
|
| 151 |
-
|
|
|
|
|
|
|
|
|
|
| 152 |
yield {
|
| 153 |
-
answer_output: gr.Markdown(
|
| 154 |
-
sources_output: gr.HTML(
|
| 155 |
search_btn: gr.Button("Search", interactive=True),
|
| 156 |
-
chat_history_display: history + [[query,
|
|
|
|
| 157 |
}
|
| 158 |
|
| 159 |
# Update the CSS for better contrast and readability
|
|
@@ -327,6 +442,19 @@ css = """
|
|
| 327 |
border-radius: 8px !important;
|
| 328 |
margin-top: 1rem !important;
|
| 329 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 330 |
"""
|
| 331 |
|
| 332 |
# Update the Gradio interface layout
|
|
@@ -335,7 +463,7 @@ with gr.Blocks(title="AI Search Assistant", css=css, theme="dark") as demo:
|
|
| 335 |
|
| 336 |
with gr.Column(elem_id="header"):
|
| 337 |
gr.Markdown("# 🔍 AI Search Assistant")
|
| 338 |
-
gr.Markdown("### Powered by DeepSeek & Real-time Web Results")
|
| 339 |
|
| 340 |
with gr.Column(elem_classes="search-container"):
|
| 341 |
with gr.Row(elem_classes="search-box"):
|
|
@@ -346,11 +474,19 @@ with gr.Blocks(title="AI Search Assistant", css=css, theme="dark") as demo:
|
|
| 346 |
container=False
|
| 347 |
)
|
| 348 |
search_btn = gr.Button("Search", variant="primary", scale=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 349 |
|
| 350 |
with gr.Row(elem_classes="results-container"):
|
| 351 |
with gr.Column(scale=2):
|
| 352 |
with gr.Column(elem_classes="answer-box"):
|
| 353 |
answer_output = gr.Markdown(elem_classes="markdown-content")
|
|
|
|
|
|
|
| 354 |
with gr.Accordion("Chat History", open=False, elem_classes="accordion"):
|
| 355 |
chat_history_display = gr.Chatbot(elem_classes="chat-history")
|
| 356 |
with gr.Column(scale=1):
|
|
@@ -373,15 +509,15 @@ with gr.Blocks(title="AI Search Assistant", css=css, theme="dark") as demo:
|
|
| 373 |
# Handle interactions
|
| 374 |
search_btn.click(
|
| 375 |
fn=process_query,
|
| 376 |
-
inputs=[search_input, chat_history],
|
| 377 |
-
outputs=[answer_output, sources_output, search_btn, chat_history_display]
|
| 378 |
)
|
| 379 |
|
| 380 |
# Also trigger search on Enter key
|
| 381 |
search_input.submit(
|
| 382 |
fn=process_query,
|
| 383 |
-
inputs=[search_input, chat_history],
|
| 384 |
-
outputs=[answer_output, sources_output, search_btn, chat_history_display]
|
| 385 |
)
|
| 386 |
|
| 387 |
if __name__ == "__main__":
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
import spaces
|
| 4 |
from duckduckgo_search import DDGS
|
| 5 |
import time
|
| 6 |
import torch
|
| 7 |
from datetime import datetime
|
| 8 |
+
import os
|
| 9 |
+
import subprocess
|
| 10 |
+
import numpy as np
|
| 11 |
+
|
| 12 |
+
# Install required dependencies for Kokoro with better error handling
|
| 13 |
+
try:
|
| 14 |
+
subprocess.run(['git', 'lfs', 'install'], check=True)
|
| 15 |
+
if not os.path.exists('Kokoro-82M'):
|
| 16 |
+
subprocess.run(['git', 'clone', 'https://huggingface.co/hexgrad/Kokoro-82M'], check=True)
|
| 17 |
+
|
| 18 |
+
# Try installing espeak with proper package manager commands
|
| 19 |
+
try:
|
| 20 |
+
# Update package list first
|
| 21 |
+
subprocess.run(['apt-get', 'update'], check=True)
|
| 22 |
+
# Try installing espeak first (more widely available)
|
| 23 |
+
subprocess.run(['apt-get', 'install', '-y', 'espeak'], check=True)
|
| 24 |
+
except subprocess.CalledProcessError:
|
| 25 |
+
print("Warning: Could not install espeak. Attempting espeak-ng...")
|
| 26 |
+
try:
|
| 27 |
+
subprocess.run(['apt-get', 'install', '-y', 'espeak-ng'], check=True)
|
| 28 |
+
except subprocess.CalledProcessError:
|
| 29 |
+
print("Warning: Could not install espeak or espeak-ng. TTS functionality may be limited.")
|
| 30 |
+
|
| 31 |
+
except Exception as e:
|
| 32 |
+
print(f"Warning: Initial setup error: {str(e)}")
|
| 33 |
+
print("Continuing with limited functionality...")
|
| 34 |
+
|
| 35 |
+
# Initialize models and tokenizers
|
| 36 |
model_name = "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
|
| 37 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
tokenizer.pad_token = tokenizer.eos_token
|
| 39 |
|
| 40 |
+
# Move model initialization inside a function to prevent CUDA initialization in main process
|
| 41 |
+
def init_models():
|
| 42 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 43 |
+
model_name,
|
| 44 |
+
device_map="auto",
|
| 45 |
+
offload_folder="offload",
|
| 46 |
+
low_cpu_mem_usage=True,
|
| 47 |
+
torch_dtype=torch.float16
|
| 48 |
+
)
|
| 49 |
+
return model
|
| 50 |
+
|
| 51 |
+
# Initialize Kokoro TTS with better error handling
|
| 52 |
+
try:
|
| 53 |
+
import sys
|
| 54 |
+
sys.path.append('Kokoro-82M')
|
| 55 |
+
from models import build_model
|
| 56 |
+
from kokoro import generate
|
| 57 |
+
|
| 58 |
+
# Don't initialize models/voices in main process for ZeroGPU compatibility
|
| 59 |
+
VOICE_CHOICES = {
|
| 60 |
+
'🇺🇸 Female (Default)': 'af',
|
| 61 |
+
'🇺🇸 Bella': 'af_bella',
|
| 62 |
+
'🇺🇸 Sarah': 'af_sarah',
|
| 63 |
+
'🇺🇸 Nicole': 'af_nicole'
|
| 64 |
+
}
|
| 65 |
+
TTS_ENABLED = True
|
| 66 |
+
except Exception as e:
|
| 67 |
+
print(f"Warning: Could not initialize Kokoro TTS: {str(e)}")
|
| 68 |
+
TTS_ENABLED = False
|
| 69 |
+
|
| 70 |
+
def get_web_results(query, max_results=5): # Increased to 5 for better context
|
| 71 |
"""Get web search results using DuckDuckGo"""
|
| 72 |
try:
|
| 73 |
with DDGS() as ddgs:
|
| 74 |
results = list(ddgs.text(query, max_results=max_results))
|
| 75 |
return [{
|
| 76 |
"title": result.get("title", ""),
|
| 77 |
+
"snippet": result["body"],
|
| 78 |
"url": result["href"],
|
| 79 |
"date": result.get("published", "")
|
| 80 |
} for result in results]
|
|
|
|
| 82 |
return []
|
| 83 |
|
| 84 |
def format_prompt(query, context):
|
| 85 |
+
"""Format the prompt with web context"""
|
| 86 |
+
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 87 |
+
context_lines = '\n'.join([f'- [{res["title"]}]: {res["snippet"]}' for res in context])
|
| 88 |
+
return f"""You are an intelligent search assistant. Answer the user's query using the provided web context.
|
| 89 |
+
Current Time: {current_time}
|
| 90 |
+
|
| 91 |
+
Important: For election-related queries, please distinguish clearly between different election years and types (presidential vs. non-presidential). Only use information from the provided web context.
|
| 92 |
+
|
| 93 |
+
Query: {query}
|
| 94 |
+
|
| 95 |
+
Web Context:
|
| 96 |
+
{context_lines}
|
| 97 |
+
|
| 98 |
+
Provide a detailed answer in markdown format. Include relevant information from sources and cite them using [1], [2], etc. If the query is about elections, clearly specify which year and type of election you're discussing.
|
| 99 |
+
Answer:"""
|
| 100 |
|
| 101 |
def format_sources(web_results):
|
| 102 |
"""Format sources with more details"""
|
|
|
|
| 120 |
sources_html += "</div>"
|
| 121 |
return sources_html
|
| 122 |
|
| 123 |
+
# Wrap the answer generation with spaces.GPU decorator
|
| 124 |
+
@spaces.GPU(duration=30)
|
| 125 |
def generate_answer(prompt):
|
| 126 |
+
"""Generate answer using the DeepSeek model"""
|
| 127 |
+
# Initialize model inside the GPU-decorated function
|
| 128 |
+
model = init_models()
|
| 129 |
+
|
| 130 |
+
inputs = tokenizer(
|
| 131 |
+
prompt,
|
| 132 |
+
return_tensors="pt",
|
| 133 |
+
padding=True,
|
| 134 |
+
truncation=True,
|
| 135 |
+
max_length=512,
|
| 136 |
+
return_attention_mask=True
|
| 137 |
+
).to(model.device)
|
| 138 |
+
|
| 139 |
+
outputs = model.generate(
|
| 140 |
+
inputs.input_ids,
|
| 141 |
+
attention_mask=inputs.attention_mask,
|
| 142 |
+
max_new_tokens=256,
|
| 143 |
+
temperature=0.7,
|
| 144 |
+
top_p=0.95,
|
| 145 |
+
pad_token_id=tokenizer.eos_token_id,
|
| 146 |
+
do_sample=True,
|
| 147 |
+
early_stopping=True
|
| 148 |
+
)
|
| 149 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 150 |
+
|
| 151 |
+
# Similarly wrap TTS generation with spaces.GPU
|
| 152 |
+
@spaces.GPU(duration=60)
|
| 153 |
+
def generate_speech_with_gpu(text, voice_name='af'):
|
| 154 |
+
"""Generate speech from text using Kokoro TTS model with GPU handling"""
|
| 155 |
try:
|
| 156 |
+
# Initialize TTS model and voice inside GPU function
|
| 157 |
+
device = 'cuda'
|
| 158 |
+
TTS_MODEL = build_model('Kokoro-82M/kokoro-v0_19.pth', device)
|
| 159 |
+
VOICEPACK = torch.load(f'Kokoro-82M/voices/{voice_name}.pt', weights_only=True).to(device)
|
| 160 |
|
| 161 |
+
# Clean the text
|
| 162 |
+
clean_text = ' '.join([line for line in text.split('\n') if not line.startswith('#')])
|
| 163 |
+
clean_text = clean_text.replace('[', '').replace(']', '').replace('*', '')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 164 |
|
| 165 |
+
# Split long text into chunks
|
| 166 |
+
max_chars = 1000
|
| 167 |
+
chunks = []
|
| 168 |
+
|
| 169 |
+
if len(clean_text) > max_chars:
|
| 170 |
+
sentences = clean_text.split('.')
|
| 171 |
+
current_chunk = ""
|
| 172 |
+
|
| 173 |
+
for sentence in sentences:
|
| 174 |
+
if len(current_chunk) + len(sentence) < max_chars:
|
| 175 |
+
current_chunk += sentence + "."
|
| 176 |
+
else:
|
| 177 |
+
if current_chunk:
|
| 178 |
+
chunks.append(current_chunk)
|
| 179 |
+
current_chunk = sentence + "."
|
| 180 |
+
if current_chunk:
|
| 181 |
+
chunks.append(current_chunk)
|
| 182 |
+
else:
|
| 183 |
+
chunks = [clean_text]
|
| 184 |
+
|
| 185 |
+
# Generate audio for each chunk
|
| 186 |
+
audio_chunks = []
|
| 187 |
+
for chunk in chunks:
|
| 188 |
+
if chunk.strip(): # Only process non-empty chunks
|
| 189 |
+
chunk_audio, _ = generate(TTS_MODEL, chunk.strip(), VOICEPACK, lang='a')
|
| 190 |
+
if isinstance(chunk_audio, torch.Tensor):
|
| 191 |
+
chunk_audio = chunk_audio.cpu().numpy()
|
| 192 |
+
audio_chunks.append(chunk_audio)
|
| 193 |
+
|
| 194 |
+
# Concatenate chunks if we have any
|
| 195 |
+
if audio_chunks:
|
| 196 |
+
if len(audio_chunks) > 1:
|
| 197 |
+
final_audio = np.concatenate(audio_chunks)
|
| 198 |
+
else:
|
| 199 |
+
final_audio = audio_chunks[0]
|
| 200 |
+
return (24000, final_audio)
|
| 201 |
+
return None
|
| 202 |
|
|
|
|
|
|
|
|
|
|
| 203 |
except Exception as e:
|
| 204 |
+
print(f"Error generating speech: {str(e)}")
|
| 205 |
+
import traceback
|
| 206 |
+
traceback.print_exc()
|
| 207 |
+
return None
|
| 208 |
|
| 209 |
+
def process_query(query, history, selected_voice='af'):
|
| 210 |
+
"""Process user query with streaming effect"""
|
| 211 |
try:
|
| 212 |
if history is None:
|
| 213 |
history = []
|
| 214 |
+
|
| 215 |
# Get web results first
|
| 216 |
web_results = get_web_results(query)
|
| 217 |
sources_html = format_sources(web_results)
|
| 218 |
|
| 219 |
+
current_history = history + [[query, "*Searching...*"]]
|
| 220 |
yield {
|
| 221 |
+
answer_output: gr.Markdown("*Searching the web...*"),
|
| 222 |
sources_output: gr.HTML(sources_html),
|
| 223 |
+
search_btn: gr.Button("Searching...", interactive=False),
|
| 224 |
+
chat_history_display: current_history,
|
| 225 |
+
audio_output: None
|
| 226 |
}
|
| 227 |
|
| 228 |
+
# Generate answer
|
| 229 |
prompt = format_prompt(query, web_results)
|
| 230 |
answer = generate_answer(prompt)
|
| 231 |
+
final_answer = answer.split("Answer:")[-1].strip()
|
| 232 |
|
| 233 |
+
# Generate speech from the answer
|
| 234 |
+
if TTS_ENABLED:
|
| 235 |
+
try:
|
| 236 |
+
yield {
|
| 237 |
+
answer_output: gr.Markdown(final_answer),
|
| 238 |
+
sources_output: gr.HTML(sources_html),
|
| 239 |
+
search_btn: gr.Button("Generating audio...", interactive=False),
|
| 240 |
+
chat_history_display: history + [[query, final_answer]],
|
| 241 |
+
audio_output: None
|
| 242 |
+
}
|
| 243 |
+
|
| 244 |
+
audio = generate_speech_with_gpu(final_answer, selected_voice)
|
| 245 |
+
if audio is None:
|
| 246 |
+
print("Failed to generate audio")
|
| 247 |
+
except Exception as e:
|
| 248 |
+
print(f"Error in speech generation: {str(e)}")
|
| 249 |
+
audio = None
|
| 250 |
+
else:
|
| 251 |
+
audio = None
|
| 252 |
+
|
| 253 |
+
updated_history = history + [[query, final_answer]]
|
| 254 |
yield {
|
| 255 |
+
answer_output: gr.Markdown(final_answer),
|
| 256 |
sources_output: gr.HTML(sources_html),
|
| 257 |
search_btn: gr.Button("Search", interactive=True),
|
| 258 |
+
chat_history_display: updated_history,
|
| 259 |
+
audio_output: audio if audio is not None else gr.Audio(value=None)
|
| 260 |
}
|
|
|
|
| 261 |
except Exception as e:
|
| 262 |
+
error_message = str(e)
|
| 263 |
+
if "GPU quota" in error_message:
|
| 264 |
+
error_message = "⚠️ GPU quota exceeded. Please try again later when the daily quota resets."
|
| 265 |
+
|
| 266 |
yield {
|
| 267 |
+
answer_output: gr.Markdown(f"Error: {error_message}"),
|
| 268 |
+
sources_output: gr.HTML(sources_html),
|
| 269 |
search_btn: gr.Button("Search", interactive=True),
|
| 270 |
+
chat_history_display: history + [[query, f"*Error: {error_message}*"]],
|
| 271 |
+
audio_output: None
|
| 272 |
}
|
| 273 |
|
| 274 |
# Update the CSS for better contrast and readability
|
|
|
|
| 442 |
border-radius: 8px !important;
|
| 443 |
margin-top: 1rem !important;
|
| 444 |
}
|
| 445 |
+
|
| 446 |
+
.voice-selector {
|
| 447 |
+
margin-top: 1rem;
|
| 448 |
+
background: #2c2d30;
|
| 449 |
+
border-radius: 8px;
|
| 450 |
+
padding: 0.5rem;
|
| 451 |
+
}
|
| 452 |
+
|
| 453 |
+
.voice-selector select {
|
| 454 |
+
background: #3a3b3e !important;
|
| 455 |
+
color: white !important;
|
| 456 |
+
border: 1px solid #4a4b4e !important;
|
| 457 |
+
}
|
| 458 |
"""
|
| 459 |
|
| 460 |
# Update the Gradio interface layout
|
|
|
|
| 463 |
|
| 464 |
with gr.Column(elem_id="header"):
|
| 465 |
gr.Markdown("# 🔍 AI Search Assistant")
|
| 466 |
+
gr.Markdown("### Powered by DeepSeek & Real-time Web Results with Voice")
|
| 467 |
|
| 468 |
with gr.Column(elem_classes="search-container"):
|
| 469 |
with gr.Row(elem_classes="search-box"):
|
|
|
|
| 474 |
container=False
|
| 475 |
)
|
| 476 |
search_btn = gr.Button("Search", variant="primary", scale=1)
|
| 477 |
+
voice_select = gr.Dropdown(
|
| 478 |
+
choices=list(VOICE_CHOICES.items()),
|
| 479 |
+
value='af',
|
| 480 |
+
label="Select Voice",
|
| 481 |
+
elem_classes="voice-selector"
|
| 482 |
+
)
|
| 483 |
|
| 484 |
with gr.Row(elem_classes="results-container"):
|
| 485 |
with gr.Column(scale=2):
|
| 486 |
with gr.Column(elem_classes="answer-box"):
|
| 487 |
answer_output = gr.Markdown(elem_classes="markdown-content")
|
| 488 |
+
with gr.Row():
|
| 489 |
+
audio_output = gr.Audio(label="Voice Response", elem_classes="audio-player")
|
| 490 |
with gr.Accordion("Chat History", open=False, elem_classes="accordion"):
|
| 491 |
chat_history_display = gr.Chatbot(elem_classes="chat-history")
|
| 492 |
with gr.Column(scale=1):
|
|
|
|
| 509 |
# Handle interactions
|
| 510 |
search_btn.click(
|
| 511 |
fn=process_query,
|
| 512 |
+
inputs=[search_input, chat_history, voice_select],
|
| 513 |
+
outputs=[answer_output, sources_output, search_btn, chat_history_display, audio_output]
|
| 514 |
)
|
| 515 |
|
| 516 |
# Also trigger search on Enter key
|
| 517 |
search_input.submit(
|
| 518 |
fn=process_query,
|
| 519 |
+
inputs=[search_input, chat_history, voice_select],
|
| 520 |
+
outputs=[answer_output, sources_output, search_btn, chat_history_display, audio_output]
|
| 521 |
)
|
| 522 |
|
| 523 |
if __name__ == "__main__":
|