import streamlit as st
import os
import json
from datetime import datetime, timedelta
import base64
import pandas as pd
import pydeck as pdk
from paper import (
literature_research_task, outline_task, draft_writing_task,
citation_task, editing_task, chatbot_task,
run_task
)
# st.set_page_config()는 다른 Streamlit 함수보다 가장 먼저 실행되어야 합니다.
st.set_page_config(
page_title="Your AI Agent for Academic Research",
page_icon="📚",
layout="wide",
initial_sidebar_state="expanded"
)
# ------------------------------------------
# 다국어 지원 (영어/한국어 예시)
# ------------------------------------------
translations = {
"en": {
"page_title": "Your AI Agent for Academic Research",
"header": "Your AI Agent for Academic Research",
"create_itinerary": "Generate Your Research Paper",
"trip_details": "Research Details",
"origin": "Research Topic",
"destination": "Paper Title",
"travel_dates": "Due Date",
"duration": "Paper Length (pages)",
"preferences": "Keywords/Focus",
"special_requirements": "Additional Instructions",
"submit": "🚀 Generate My Research Paper",
"request_details": "Your Research Request",
"from": "Topic",
"when": "Due Date",
"budget": "Paper Type",
"travel_style": "Writing Style",
"live_agent_outputs": "Live Agent Outputs",
"full_itinerary": "Full Paper",
"details": "Details",
"download_share": "Download & Share",
"save_itinerary": "Save Your Paper",
"plan_another_trip": "🔄 Generate Another Paper",
"about": "About",
"how_it_works": "How it works",
"travel_agents": "Research Agents",
"share_itinerary": "Share Your Paper",
"save_for_mobile": "Save for Mobile",
"built_with": "Built with ❤️ for you",
"itinerary_ready": "Your Research Paper is Ready! 🎉",
"personalized_experience": "We've created a personalized academic paper based on your inputs. Explore your paper below.",
"agent_activity": "Agent Activity",
"error_origin_destination": "Please enter both the research topic and paper title.",
"your_itinerary_file": "Your Paper File",
"text_format": "Text format - Can be opened in any text editor"
},
"ko": {
"page_title": "당신의 학술 연구 AI 에이전트",
"header": "당신의 학술 연구 AI 에이전트",
"create_itinerary": "논문 생성",
"trip_details": "연구 세부사항",
"origin": "연구 주제",
"destination": "논문 제목",
"travel_dates": "제출 기한",
"duration": "논문 분량 (페이지)",
"preferences": "키워드/주요 초점",
"special_requirements": "추가 지시사항",
"submit": "🚀 나의 논문 생성",
"request_details": "연구 요청 정보",
"from": "주제",
"when": "제출 기한",
"budget": "논문 종류",
"travel_style": "작성 스타일",
"live_agent_outputs": "실시간 에이전트 결과",
"full_itinerary": "전체 논문",
"details": "세부사항",
"download_share": "다운로드 및 공유",
"save_itinerary": "논문 저장",
"plan_another_trip": "🔄 다른 논문 생성",
"about": "소개",
"how_it_works": "작동 방식",
"travel_agents": "연구 에이전트",
"share_itinerary": "논문 공유",
"save_for_mobile": "모바일 저장",
"built_with": "당신을 위해 ❤️ 만들어졌습니다",
"itinerary_ready": "논문이 준비되었습니다! 🎉",
"personalized_experience": "입력하신 정보를 바탕으로 맞춤형 논문이 생성되었습니다. 아래에서 논문을 확인하세요.",
"agent_activity": "에이전트 활동",
"error_origin_destination": "연구 주제와 논문 제목을 모두 입력하세요.",
"your_itinerary_file": "논문 파일",
"text_format": "텍스트 형식 - 모든 텍스트 편집기에서 열 수 있습니다."
}
}
def t(key):
lang = st.session_state.get("selected_language", "en")
return translations[lang].get(key, key)
# ---------------------------
# 세션 초기화
# ---------------------------
if 'selected_language' not in st.session_state:
st.session_state.selected_language = "en"
# ------------------------------------------
# 사이드바에 언어 선택 위젯 추가
# ------------------------------------------
with st.sidebar:
language = st.selectbox(
"Language / 언어",
["English", "한국어"]
)
lang_map = {
"English": "en",
"한국어": "ko"
}
st.session_state.selected_language = lang_map.get(language, "en")
# ------------------------------------------
# UI 시작
# ------------------------------------------
st.markdown("""
""", unsafe_allow_html=True)
def get_download_link(text_content, filename):
b64 = base64.b64encode(text_content.encode()).decode()
href = f'📥 {t("save_itinerary")}'
return href
def display_modern_progress(current_step, total_steps=5):
if 'progress_steps' not in st.session_state:
st.session_state.progress_steps = {
0: {'status': 'pending', 'name': t("trip_details")},
1: {'status': 'pending', 'name': t("about")},
2: {'status': 'pending', 'name': t("live_agent_outputs")},
3: {'status': 'pending', 'name': t("download_share")},
4: {'status': 'pending', 'name': t("full_itinerary")}
}
for i in range(total_steps):
if i < current_step:
st.session_state.progress_steps[i]['status'] = 'complete'
elif i == current_step:
st.session_state.progress_steps[i]['status'] = 'active'
else:
st.session_state.progress_steps[i]['status'] = 'pending'
progress_percentage = (current_step / total_steps) * 100
st.progress(progress_percentage / 100)
st.markdown("
Progress: " + str(progress_percentage) + "% completed.
")
return progress_percentage
def update_step_status(step_index, status):
if 'progress_steps' in st.session_state and step_index in st.session_state.progress_steps:
st.session_state.progress_steps[step_index]['status'] = status
def run_task_with_logs(task, input_text, log_container, output_container, results_key=None):
log_message = f"🤖 Starting {task.agent.role}..."
st.session_state.log_messages.append(log_message)
with log_container:
st.markdown("### " + t("agent_activity"))
for msg in st.session_state.log_messages:
st.markdown(msg)
result = run_task(task, input_text)
if results_key:
st.session_state.results[results_key] = result
log_message = f"✅ {task.agent.role} completed!"
st.session_state.log_messages.append(log_message)
with log_container:
st.markdown("### " + t("agent_activity"))
for msg in st.session_state.log_messages:
st.markdown(msg)
with output_container:
st.markdown(f"### {task.agent.role} Output")
st.markdown("" + result + "
", unsafe_allow_html=True)
return result
if 'generated_itinerary' not in st.session_state:
st.session_state.generated_itinerary = None
if 'generation_complete' not in st.session_state:
st.session_state.generation_complete = False
if 'current_step' not in st.session_state:
st.session_state.current_step = 0
if 'results' not in st.session_state:
st.session_state.results = {
"literature_review": "",
"outline": "",
"draft": "",
"citations": "",
"edited": ""
}
if 'log_messages' not in st.session_state:
st.session_state.log_messages = []
if 'form_submitted' not in st.session_state:
st.session_state.form_submitted = False
st.markdown(f"""
{t("header")}
Generate your personalized research paper with AI-powered academic agents.
""", unsafe_allow_html=True)
st.markdown('
', unsafe_allow_html=True)
with st.sidebar:
st.markdown("""
Your AI Academic Research Assistant
AI-Powered Paper Generation
""", unsafe_allow_html=True)
st.markdown('', unsafe_allow_html=True)
st.markdown("### " + t("about"))
st.info("This tool generates a personalized academic research paper based on your inputs. Fill in the form and let our specialized agents craft your paper!")
st.markdown('
', unsafe_allow_html=True)
st.markdown('', unsafe_allow_html=True)
st.markdown("### " + t("how_it_works"))
st.markdown("""
- Enter your research details
- AI conducts literature research
- Generate a paper outline
- Draft and edit your paper
- Download your final paper
""", unsafe_allow_html=True)
st.markdown('
', unsafe_allow_html=True)
if not st.session_state.generation_complete:
st.markdown('', unsafe_allow_html=True)
st.markdown("
" + t("create_itinerary") + "
", unsafe_allow_html=True)
st.markdown("
Fill in the details below to generate your research paper.
", unsafe_allow_html=True)
with st.form("research_form"):
col1, col2 = st.columns(2)
with col1:
research_topic = st.text_input(t("origin"), placeholder="e.g., Deep Learning in Healthcare")
paper_title = st.text_input(t("destination"), placeholder="e.g., Advances in Deep Learning for Medical Diagnosis")
due_date = st.date_input(t("travel_dates"), min_value=datetime.now())
with col2:
paper_length = st.slider(t("duration"), min_value=5, max_value=50, value=10)
paper_type_options = ["Journal", "Conference", "Thesis", "Review"]
paper_type = st.selectbox(t("budget"), paper_type_options, help="Select the type of paper")
writing_style = st.multiselect(t("travel_style"), options=["Formal", "Technical", "Creative"], default=["Formal"])
additional_instructions = st.text_area(t("special_requirements"), placeholder="Any additional instructions or requirements...")
keywords = st.text_area(t("preferences"), placeholder="Enter keywords or focus areas, separated by commas")
submit_button = st.form_submit_button(t("submit"))
st.markdown('
', unsafe_allow_html=True)
if submit_button:
if not research_topic or not paper_title:
st.error(t("error_origin_destination"))
else:
st.session_state.form_submitted = True
st.session_state.research_topic = research_topic
user_input = {
"research_topic": research_topic,
"paper_title": paper_title,
"due_date": due_date.strftime("%Y-%m-%d"),
"paper_length": str(paper_length),
"paper_type": paper_type,
"writing_style": ", ".join(writing_style),
"keywords": keywords,
"additional_instructions": additional_instructions
}
st.session_state.user_input = user_input
input_context = f"""Research Request Details:
Research Topic: {user_input['research_topic']}
Paper Title: {user_input['paper_title']}
Due Date: {user_input['due_date']}
Paper Length: {user_input['paper_length']} pages
Paper Type: {user_input['paper_type']}
Writing Style: {user_input['writing_style']}
Keywords/Focus: {user_input['keywords']}
Additional Instructions: {user_input['additional_instructions']}
"""
llm_language_instructions = {
"en": "Please output the response in English.",
"ko": "한국어로 출력해 주세요."
}
selected_lang = st.session_state.get("selected_language", "en")
language_instruction = llm_language_instructions.get(selected_lang, "Please output the response in English.")
modified_input_context = language_instruction + "\n" + input_context
st.markdown("Processing your request...
", unsafe_allow_html=True)
st.session_state.current_step = 0
update_step_status(0, 'active')
progress_placeholder = st.empty()
with progress_placeholder.container():
display_modern_progress(st.session_state.current_step)
log_container = st.container()
st.session_state.log_messages = []
output_container = st.container()
st.session_state.results = {}
# Step 1: Literature Research
literature_review = run_task_with_logs(
literature_research_task,
modified_input_context.format(topic=user_input['research_topic'], keywords=user_input['keywords']),
log_container,
output_container,
"literature_review"
)
update_step_status(0, 'complete')
st.session_state.current_step = 1
update_step_status(1, 'active')
with progress_placeholder.container():
display_modern_progress(st.session_state.current_step)
# Step 2: Generate Outline
outline = run_task_with_logs(
outline_task,
modified_input_context.format(topic=user_input['research_topic']),
log_container,
output_container,
"outline"
)
update_step_status(1, 'complete')
st.session_state.current_step = 2
update_step_status(2, 'active')
with progress_placeholder.container():
display_modern_progress(st.session_state.current_step)
# Step 3: Draft Writing
draft = run_task_with_logs(
draft_writing_task,
modified_input_context.format(topic=user_input['research_topic']),
log_container,
output_container,
"draft"
)
update_step_status(2, 'complete')
st.session_state.current_step = 3
update_step_status(3, 'active')
with progress_placeholder.container():
display_modern_progress(st.session_state.current_step)
# Step 4: Citation Generation
citations = run_task_with_logs(
citation_task,
modified_input_context.format(topic=user_input['research_topic']),
log_container,
output_container,
"citations"
)
update_step_status(3, 'complete')
st.session_state.current_step = 4
update_step_status(4, 'active')
with progress_placeholder.container():
display_modern_progress(st.session_state.current_step)
# Step 5: Editing and Polishing
edited = run_task_with_logs(
editing_task,
modified_input_context.format(topic=user_input['research_topic']),
log_container,
output_container,
"edited"
)
update_step_status(4, 'complete')
st.session_state.current_step = 5
with progress_placeholder.container():
display_modern_progress(st.session_state.current_step)
full_paper = f"""Research Paper:
{input_context}
Literature Review:
{literature_review}
Outline:
{outline}
Draft:
{draft}
Citations:
{citations}
Edited Version:
{edited}
"""
st.session_state.generated_itinerary = full_paper
st.session_state.generation_complete = True
date_str = datetime.now().strftime("%Y-%m-%d")
st.session_state.filename = f"{user_input['paper_title'].replace(' ', '_')}_{date_str}_paper.txt"
if st.session_state.generation_complete:
st.markdown(f"""
{t("itinerary_ready")}
{t("personalized_experience")}
""", unsafe_allow_html=True)
# 탭 생성 (전체 논문, 세부 정보, 다운로드/공유, 시각화, 챗봇)
full_paper_tab, details_tab, download_tab, visualization_tab, chatbot_tab = st.tabs([
"🗒️ " + t("full_itinerary"),
"💼 " + t("details"),
"💾 " + t("download_share"),
"📊 Visualization",
"🤖 챗봇 인터페이스"
])
with full_paper_tab:
st.text_area("Your Research Paper", st.session_state.generated_itinerary, height=600)
with details_tab:
agent_tabs = st.tabs(["📚 Literature Review", "📝 Outline", "✍️ Draft", "🔗 Citations", "🖋️ Edited Version"])
with agent_tabs[0]:
st.markdown("### Literature Review")
st.markdown(st.session_state.results.get("literature_review", ""))
with agent_tabs[1]:
st.markdown("### Outline")
st.markdown(st.session_state.results.get("outline", ""))
with agent_tabs[2]:
st.markdown("### Draft")
st.markdown(st.session_state.results.get("draft", ""))
with agent_tabs[3]:
st.markdown("### Citations")
st.markdown(st.session_state.results.get("citations", ""))
with agent_tabs[4]:
st.markdown("### Edited Version")
st.markdown(st.session_state.results.get("edited", ""))
with download_tab:
col1, col2 = st.columns([2, 1])
with col1:
st.markdown("### " + t("save_itinerary"))
st.markdown("Download your research paper to access it offline or share with your colleagues.")
st.markdown(f"""
{t("your_itinerary_file")}
{t("text_format")}
""", unsafe_allow_html=True)
st.markdown("" + get_download_link(st.session_state.generated_itinerary, st.session_state.filename) + "
", unsafe_allow_html=True)
st.markdown("### " + t("share_itinerary"))
st.markdown("*Coming soon: Email your paper or share via social media.*")
with col2:
st.markdown("### " + t("save_for_mobile"))
st.markdown("*Coming soon: QR code for easy access on your phone*")
with visualization_tab:
st.markdown("### Visualization")
st.markdown("A conceptual diagram or visualization related to your research paper can be displayed here. (Feature under development)")
with chatbot_tab:
st.markdown("### AI 챗봇 인터페이스")
if "chat_history" not in st.session_state:
st.session_state.chat_history = []
user_message = st.text_input("메시지를 입력하세요:", key="chat_input")
if st.button("전송", key="send_button"):
if user_message:
response = run_task(chatbot_task, user_message)
st.session_state.chat_history.append({
"speaker": "사용자",
"message": user_message,
"time": datetime.now()
})
st.session_state.chat_history.append({
"speaker": "AI",
"message": response,
"time": datetime.now()
})
st.markdown("", unsafe_allow_html=True)
for chat in st.session_state.chat_history:
time_str = chat["time"].strftime("%H:%M:%S")
st.markdown(f"**{chat['speaker']}** ({time_str}): {chat['message']}")
st.markdown("
", unsafe_allow_html=True)
st.markdown("""
""" + t("built_with") + """
""", unsafe_allow_html=True)