Spaces:
Running
Running
| # Copyright 2023 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # modified by Wuvin | |
| from typing import Any, Callable, Dict, List, Optional, Tuple, Union | |
| import numpy as np | |
| import torch | |
| from diffusers import AutoencoderKL, UNet2DConditionModel, StableDiffusionImageVariationPipeline | |
| from diffusers.schedulers import KarrasDiffusionSchedulers | |
| from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker, StableDiffusionPipelineOutput | |
| from diffusers.models.unets.unet_2d_condition import UNet2DConditionModel | |
| from PIL import Image | |
| from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection | |
| class StableDiffusionImageCustomPipeline( | |
| StableDiffusionImageVariationPipeline | |
| ): | |
| def __init__( | |
| self, | |
| vae: AutoencoderKL, | |
| image_encoder: CLIPVisionModelWithProjection, | |
| unet: UNet2DConditionModel, | |
| scheduler: KarrasDiffusionSchedulers, | |
| safety_checker: StableDiffusionSafetyChecker, | |
| feature_extractor: CLIPImageProcessor, | |
| requires_safety_checker: bool = True, | |
| latents_offset=None, | |
| noisy_cond_latents=False, | |
| ): | |
| super().__init__( | |
| vae=vae, | |
| image_encoder=image_encoder, | |
| unet=unet, | |
| scheduler=scheduler, | |
| safety_checker=safety_checker, | |
| feature_extractor=feature_extractor, | |
| requires_safety_checker=requires_safety_checker | |
| ) | |
| latents_offset = tuple(latents_offset) if latents_offset is not None else None | |
| self.latents_offset = latents_offset | |
| if latents_offset is not None: | |
| self.register_to_config(latents_offset=latents_offset) | |
| self.noisy_cond_latents = noisy_cond_latents | |
| self.register_to_config(noisy_cond_latents=noisy_cond_latents) | |
| def encode_latents(self, image, device, dtype, height, width): | |
| # support batchsize > 1 | |
| if isinstance(image, Image.Image): | |
| image = [image] | |
| image = [img.convert("RGB") for img in image] | |
| images = self.image_processor.preprocess(image, height=height, width=width).to(device, dtype=dtype) | |
| latents = self.vae.encode(images).latent_dist.mode() * self.vae.config.scaling_factor | |
| if self.latents_offset is not None: | |
| return latents - torch.tensor(self.latents_offset).to(latents.device)[None, :, None, None] | |
| else: | |
| return latents | |
| def _encode_image(self, image, device, num_images_per_prompt, do_classifier_free_guidance): | |
| dtype = next(self.image_encoder.parameters()).dtype | |
| if not isinstance(image, torch.Tensor): | |
| image = self.feature_extractor(images=image, return_tensors="pt").pixel_values | |
| image = image.to(device=device, dtype=dtype) | |
| image_embeddings = self.image_encoder(image).image_embeds | |
| image_embeddings = image_embeddings.unsqueeze(1) | |
| # duplicate image embeddings for each generation per prompt, using mps friendly method | |
| bs_embed, seq_len, _ = image_embeddings.shape | |
| image_embeddings = image_embeddings.repeat(1, num_images_per_prompt, 1) | |
| image_embeddings = image_embeddings.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
| if do_classifier_free_guidance: | |
| # NOTE: the same as original code | |
| negative_prompt_embeds = torch.zeros_like(image_embeddings) | |
| # For classifier free guidance, we need to do two forward passes. | |
| # Here we concatenate the unconditional and text embeddings into a single batch | |
| # to avoid doing two forward passes | |
| image_embeddings = torch.cat([negative_prompt_embeds, image_embeddings]) | |
| return image_embeddings | |
| def __call__( | |
| self, | |
| image: Union[Image.Image, List[Image.Image], torch.FloatTensor], | |
| height: Optional[int] = 1024, | |
| width: Optional[int] = 1024, | |
| height_cond: Optional[int] = 512, | |
| width_cond: Optional[int] = 512, | |
| num_inference_steps: int = 50, | |
| guidance_scale: float = 7.5, | |
| num_images_per_prompt: Optional[int] = 1, | |
| eta: float = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None, | |
| callback_steps: int = 1, | |
| upper_left_feature: bool = False, | |
| ): | |
| r""" | |
| The call function to the pipeline for generation. | |
| Args: | |
| image (`Image.Image` or `List[Image.Image]` or `torch.FloatTensor`): | |
| Image or images to guide image generation. If you provide a tensor, it needs to be compatible with | |
| [`CLIPImageProcessor`](https://huggingface.co/lambdalabs/sd-image-variations-diffusers/blob/main/feature_extractor/preprocessor_config.json). | |
| height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | |
| The height in pixels of the generated image. | |
| width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`): | |
| The width in pixels of the generated image. | |
| num_inference_steps (`int`, *optional*, defaults to 50): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. This parameter is modulated by `strength`. | |
| guidance_scale (`float`, *optional*, defaults to 7.5): | |
| A higher guidance scale value encourages the model to generate images closely linked to the text | |
| `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`. | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| eta (`float`, *optional*, defaults to 0.0): | |
| Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies | |
| to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers. | |
| generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
| A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make | |
| generation deterministic. | |
| latents (`torch.FloatTensor`, *optional*): | |
| Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor is generated by sampling using the supplied random `generator`. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generated image. Choose between `PIL.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a | |
| plain tuple. | |
| callback (`Callable`, *optional*): | |
| A function that calls every `callback_steps` steps during inference. The function is called with the | |
| following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`. | |
| callback_steps (`int`, *optional*, defaults to 1): | |
| The frequency at which the `callback` function is called. If not specified, the callback is called at | |
| every step. | |
| Returns: | |
| [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`: | |
| If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned, | |
| otherwise a `tuple` is returned where the first element is a list with the generated images and the | |
| second element is a list of `bool`s indicating whether the corresponding generated image contains | |
| "not-safe-for-work" (nsfw) content. | |
| Examples: | |
| ```py | |
| from diffusers import StableDiffusionImageVariationPipeline | |
| from PIL import Image | |
| from io import BytesIO | |
| import requests | |
| pipe = StableDiffusionImageVariationPipeline.from_pretrained( | |
| "lambdalabs/sd-image-variations-diffusers", revision="v2.0" | |
| ) | |
| pipe = pipe.to("cuda") | |
| url = "https://lh3.googleusercontent.com/y-iFOHfLTwkuQSUegpwDdgKmOjRSTvPxat63dQLB25xkTs4lhIbRUFeNBWZzYf370g=s1200" | |
| response = requests.get(url) | |
| image = Image.open(BytesIO(response.content)).convert("RGB") | |
| out = pipe(image, num_images_per_prompt=3, guidance_scale=15) | |
| out["images"][0].save("result.jpg") | |
| ``` | |
| """ | |
| # 0. Default height and width to unet | |
| height = height or self.unet.config.sample_size * self.vae_scale_factor | |
| width = width or self.unet.config.sample_size * self.vae_scale_factor | |
| # 1. Check inputs. Raise error if not correct | |
| self.check_inputs(image, height, width, callback_steps) | |
| # 2. Define call parameters | |
| if isinstance(image, Image.Image): | |
| batch_size = 1 | |
| elif isinstance(image, list): | |
| batch_size = len(image) | |
| else: | |
| batch_size = image.shape[0] | |
| device = self._execution_device | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| do_classifier_free_guidance = guidance_scale > 1.0 | |
| # 3. Encode input image | |
| if isinstance(image, Image.Image) and upper_left_feature: | |
| # only use the first one of four images | |
| emb_image = image.crop((0, 0, image.size[0] // 2, image.size[1] // 2)) | |
| else: | |
| emb_image = image | |
| image_embeddings = self._encode_image(emb_image, device, num_images_per_prompt, do_classifier_free_guidance) | |
| cond_latents = self.encode_latents(image, image_embeddings.device, image_embeddings.dtype, height_cond, width_cond) | |
| # 4. Prepare timesteps | |
| self.scheduler.set_timesteps(num_inference_steps, device=device) | |
| timesteps = self.scheduler.timesteps | |
| # 5. Prepare latent variables | |
| num_channels_latents = self.unet.config.out_channels | |
| latents = self.prepare_latents( | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| image_embeddings.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| # 6. Prepare extra step kwargs. | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| # 7. Denoising loop | |
| num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| if self.noisy_cond_latents: | |
| raise ValueError("Noisy condition latents is not recommended.") | |
| else: | |
| noisy_cond_latents = cond_latents | |
| noisy_cond_latents = torch.cat([torch.zeros_like(noisy_cond_latents), noisy_cond_latents]) if do_classifier_free_guidance else noisy_cond_latents | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
| latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
| # predict the noise residual | |
| noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=image_embeddings, condition_latents=noisy_cond_latents).sample | |
| # perform guidance | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if callback is not None and i % callback_steps == 0: | |
| step_idx = i // getattr(self.scheduler, "order", 1) | |
| callback(step_idx, t, latents) | |
| self.maybe_free_model_hooks() | |
| if self.latents_offset is not None: | |
| latents = latents + torch.tensor(self.latents_offset).to(latents.device)[None, :, None, None] | |
| if not output_type == "latent": | |
| image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] | |
| image, has_nsfw_concept = self.run_safety_checker(image, device, image_embeddings.dtype) | |
| else: | |
| image = latents | |
| has_nsfw_concept = None | |
| if has_nsfw_concept is None: | |
| do_denormalize = [True] * image.shape[0] | |
| else: | |
| do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept] | |
| image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize) | |
| self.maybe_free_model_hooks() | |
| if not return_dict: | |
| return (image, has_nsfw_concept) | |
| return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept) | |
| if __name__ == "__main__": | |
| pass | |