Spaces:
Running
on
Zero
Running
on
Zero
Update `app.py`
Browse files
app.py
CHANGED
|
@@ -1,51 +1,63 @@
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
| 3 |
-
import
|
| 4 |
-
#import spaces #[uncomment to use ZeroGPU]
|
| 5 |
-
from diffusers import DiffusionPipeline
|
| 6 |
import torch
|
|
|
|
| 7 |
|
| 8 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 9 |
-
|
|
|
|
| 10 |
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
torch_dtype = torch.float32
|
| 15 |
|
| 16 |
-
pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
| 17 |
-
pipe = pipe.to(device)
|
| 18 |
|
| 19 |
MAX_SEED = np.iinfo(np.int32).max
|
| 20 |
MAX_IMAGE_SIZE = 1024
|
| 21 |
|
| 22 |
-
#@spaces.GPU #[uncomment to use ZeroGPU]
|
| 23 |
-
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, progress=gr.Progress(track_tqdm=True)):
|
| 24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
if randomize_seed:
|
| 26 |
seed = random.randint(0, MAX_SEED)
|
| 27 |
-
|
| 28 |
generator = torch.Generator().manual_seed(seed)
|
| 29 |
-
|
| 30 |
-
image =
|
| 31 |
-
prompt
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
).images[0]
|
| 39 |
-
|
| 40 |
return image, seed
|
| 41 |
|
|
|
|
| 42 |
examples = [
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
|
|
|
|
|
|
| 46 |
]
|
| 47 |
|
| 48 |
-
css="""
|
| 49 |
#col-container {
|
| 50 |
margin: 0 auto;
|
| 51 |
max-width: 640px;
|
|
@@ -53,14 +65,10 @@ css="""
|
|
| 53 |
"""
|
| 54 |
|
| 55 |
with gr.Blocks(css=css) as demo:
|
| 56 |
-
|
| 57 |
with gr.Column(elem_id="col-container"):
|
| 58 |
-
gr.Markdown(
|
| 59 |
-
|
| 60 |
-
""")
|
| 61 |
-
|
| 62 |
with gr.Row():
|
| 63 |
-
|
| 64 |
prompt = gr.Text(
|
| 65 |
label="Prompt",
|
| 66 |
show_label=False,
|
|
@@ -68,75 +76,79 @@ with gr.Blocks(css=css) as demo:
|
|
| 68 |
placeholder="Enter your prompt",
|
| 69 |
container=False,
|
| 70 |
)
|
| 71 |
-
|
| 72 |
run_button = gr.Button("Run", scale=0)
|
| 73 |
-
|
| 74 |
result = gr.Image(label="Result", show_label=False)
|
| 75 |
|
| 76 |
with gr.Accordion("Advanced Settings", open=False):
|
| 77 |
-
|
| 78 |
-
negative_prompt = gr.Text(
|
| 79 |
-
label="Negative prompt",
|
| 80 |
-
max_lines=1,
|
| 81 |
-
placeholder="Enter a negative prompt",
|
| 82 |
-
visible=False,
|
| 83 |
-
)
|
| 84 |
-
|
| 85 |
seed = gr.Slider(
|
| 86 |
label="Seed",
|
| 87 |
minimum=0,
|
| 88 |
maximum=MAX_SEED,
|
| 89 |
step=1,
|
| 90 |
-
value=
|
| 91 |
)
|
| 92 |
-
|
| 93 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 94 |
-
|
| 95 |
with gr.Row():
|
| 96 |
-
|
| 97 |
width = gr.Slider(
|
| 98 |
label="Width",
|
| 99 |
minimum=256,
|
| 100 |
maximum=MAX_IMAGE_SIZE,
|
| 101 |
step=32,
|
| 102 |
-
value=1024,
|
| 103 |
)
|
| 104 |
-
|
| 105 |
height = gr.Slider(
|
| 106 |
label="Height",
|
| 107 |
minimum=256,
|
| 108 |
maximum=MAX_IMAGE_SIZE,
|
| 109 |
step=32,
|
| 110 |
-
value=
|
| 111 |
)
|
| 112 |
-
|
| 113 |
with gr.Row():
|
| 114 |
-
|
| 115 |
guidance_scale = gr.Slider(
|
| 116 |
label="Guidance scale",
|
| 117 |
minimum=0.0,
|
| 118 |
maximum=10.0,
|
| 119 |
step=0.1,
|
| 120 |
-
value=
|
| 121 |
)
|
| 122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
num_inference_steps = gr.Slider(
|
| 124 |
label="Number of inference steps",
|
| 125 |
minimum=1,
|
| 126 |
maximum=50,
|
| 127 |
step=1,
|
| 128 |
-
value=
|
| 129 |
)
|
| 130 |
-
|
| 131 |
-
gr.Examples(
|
| 132 |
-
|
| 133 |
-
inputs = [prompt]
|
| 134 |
-
)
|
| 135 |
gr.on(
|
| 136 |
triggers=[run_button.click, prompt.submit],
|
| 137 |
-
fn
|
| 138 |
-
inputs
|
| 139 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
)
|
| 141 |
|
| 142 |
-
demo.queue().launch()
|
|
|
|
| 1 |
+
import random
|
| 2 |
+
|
| 3 |
import gradio as gr
|
| 4 |
import numpy as np
|
| 5 |
+
import spaces
|
|
|
|
|
|
|
| 6 |
import torch
|
| 7 |
+
from diffusers import DiffusionPipeline
|
| 8 |
|
| 9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 10 |
+
repo_id = "black-forest-labs/FLUX.1-dev"
|
| 11 |
+
adapter_id = "alvarobartt/ghibli-characters-flux-lora"
|
| 12 |
|
| 13 |
+
pipeline = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch.bfloat16)
|
| 14 |
+
pipeline.load_lora_weights(adapter_id)
|
| 15 |
+
pipeline = pipeline.to(device)
|
|
|
|
| 16 |
|
|
|
|
|
|
|
| 17 |
|
| 18 |
MAX_SEED = np.iinfo(np.int32).max
|
| 19 |
MAX_IMAGE_SIZE = 1024
|
| 20 |
|
|
|
|
|
|
|
| 21 |
|
| 22 |
+
@spaces.GPU(duration=120)
|
| 23 |
+
def inference(
|
| 24 |
+
prompt: str,
|
| 25 |
+
seed: int,
|
| 26 |
+
randomize_seed: bool,
|
| 27 |
+
width: int,
|
| 28 |
+
height: int,
|
| 29 |
+
guidance_scale: float,
|
| 30 |
+
num_inference_steps: int,
|
| 31 |
+
lora_scale: float,
|
| 32 |
+
progress: gr.Progress = gr.Progress(track_tqdm=True),
|
| 33 |
+
):
|
| 34 |
if randomize_seed:
|
| 35 |
seed = random.randint(0, MAX_SEED)
|
| 36 |
+
|
| 37 |
generator = torch.Generator().manual_seed(seed)
|
| 38 |
+
|
| 39 |
+
image = pipeline(
|
| 40 |
+
prompt=prompt,
|
| 41 |
+
guidance_scale=guidance_scale,
|
| 42 |
+
num_inference_steps=num_inference_steps,
|
| 43 |
+
width=width,
|
| 44 |
+
height=height,
|
| 45 |
+
generator=generator,
|
| 46 |
+
lora_scale=lora_scale,
|
| 47 |
+
).images[0]
|
| 48 |
+
|
| 49 |
return image, seed
|
| 50 |
|
| 51 |
+
|
| 52 |
examples = [
|
| 53 |
+
(
|
| 54 |
+
"Ghibli style futuristic stormtrooper with glossy white armor and a sleek helmet,"
|
| 55 |
+
" standing heroically on a lush alien planet, vibrant flowers blooming around, soft"
|
| 56 |
+
" sunlight illuminating the scene, a gentle breeze rustling the leaves"
|
| 57 |
+
)
|
| 58 |
]
|
| 59 |
|
| 60 |
+
css = """
|
| 61 |
#col-container {
|
| 62 |
margin: 0 auto;
|
| 63 |
max-width: 640px;
|
|
|
|
| 65 |
"""
|
| 66 |
|
| 67 |
with gr.Blocks(css=css) as demo:
|
|
|
|
| 68 |
with gr.Column(elem_id="col-container"):
|
| 69 |
+
gr.Markdown("# FLUX.1 Ghibli Studio LoRA")
|
| 70 |
+
|
|
|
|
|
|
|
| 71 |
with gr.Row():
|
|
|
|
| 72 |
prompt = gr.Text(
|
| 73 |
label="Prompt",
|
| 74 |
show_label=False,
|
|
|
|
| 76 |
placeholder="Enter your prompt",
|
| 77 |
container=False,
|
| 78 |
)
|
| 79 |
+
|
| 80 |
run_button = gr.Button("Run", scale=0)
|
| 81 |
+
|
| 82 |
result = gr.Image(label="Result", show_label=False)
|
| 83 |
|
| 84 |
with gr.Accordion("Advanced Settings", open=False):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
seed = gr.Slider(
|
| 86 |
label="Seed",
|
| 87 |
minimum=0,
|
| 88 |
maximum=MAX_SEED,
|
| 89 |
step=1,
|
| 90 |
+
value=42,
|
| 91 |
)
|
| 92 |
+
|
| 93 |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 94 |
+
|
| 95 |
with gr.Row():
|
|
|
|
| 96 |
width = gr.Slider(
|
| 97 |
label="Width",
|
| 98 |
minimum=256,
|
| 99 |
maximum=MAX_IMAGE_SIZE,
|
| 100 |
step=32,
|
| 101 |
+
value=1024,
|
| 102 |
)
|
| 103 |
+
|
| 104 |
height = gr.Slider(
|
| 105 |
label="Height",
|
| 106 |
minimum=256,
|
| 107 |
maximum=MAX_IMAGE_SIZE,
|
| 108 |
step=32,
|
| 109 |
+
value=768,
|
| 110 |
)
|
| 111 |
+
|
| 112 |
with gr.Row():
|
|
|
|
| 113 |
guidance_scale = gr.Slider(
|
| 114 |
label="Guidance scale",
|
| 115 |
minimum=0.0,
|
| 116 |
maximum=10.0,
|
| 117 |
step=0.1,
|
| 118 |
+
value=3.5,
|
| 119 |
)
|
| 120 |
+
|
| 121 |
+
lora_scale = gr.Slider(
|
| 122 |
+
label="LoRA scale",
|
| 123 |
+
minimum=0.0,
|
| 124 |
+
maximum=1.0,
|
| 125 |
+
step=0.1,
|
| 126 |
+
value=1.0,
|
| 127 |
+
)
|
| 128 |
+
|
| 129 |
num_inference_steps = gr.Slider(
|
| 130 |
label="Number of inference steps",
|
| 131 |
minimum=1,
|
| 132 |
maximum=50,
|
| 133 |
step=1,
|
| 134 |
+
value=30,
|
| 135 |
)
|
| 136 |
+
|
| 137 |
+
gr.Examples(examples=examples, inputs=[prompt])
|
| 138 |
+
|
|
|
|
|
|
|
| 139 |
gr.on(
|
| 140 |
triggers=[run_button.click, prompt.submit],
|
| 141 |
+
fn=inference,
|
| 142 |
+
inputs=[
|
| 143 |
+
prompt,
|
| 144 |
+
seed,
|
| 145 |
+
randomize_seed,
|
| 146 |
+
width,
|
| 147 |
+
height,
|
| 148 |
+
guidance_scale,
|
| 149 |
+
num_inference_steps,
|
| 150 |
+
],
|
| 151 |
+
outputs=[result, seed],
|
| 152 |
)
|
| 153 |
|
| 154 |
+
demo.queue().launch()
|