File size: 7,997 Bytes
8845357
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8946bc
8845357
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import streamlit as st

st.title("Medical RAG and Reasoning App")
st.write("This app demonstrates Retrieval-Augmented Generation (RAG) for medical question answering.")

#!/usr/bin/env python
# coding: utf-8

# # HuatuoGPT-o1 Medical RAG and Reasoning
# 
# _Authored by: [Alan Ponnachan](https://huggingface.co/AlanPonnachan)_
# 
# This notebook demonstrates an end-to-end example of using HuatuoGPT-o1 for medical question answering with Retrieval-Augmented Generation (RAG) and reasoning. We'll leverage the HuatuoGPT-o1 model, a medical Large Language Model (LLM) designed for advanced medical reasoning, to provide detailed and well-structured answers to medical queries.
# 
# ## Introduction
# 
# HuatuoGPT-o1 is a medical LLM that excels at identifying mistakes, exploring alternative strategies, and refining its answers. It utilizes verifiable medical problems and a specialized medical verifier to enhance its reasoning capabilities. This notebook showcases how to use HuatuoGPT-o1 in a RAG setting, where we retrieve relevant information from a medical knowledge base and then use the model to generate a reasoned response.

# ##  Notebook Setup
# 
# 
# **Important:** Before running the code, ensure you are using a GPU runtime for faster performance. Go to **"Runtime" -> "Change runtime type"** and select **"GPU"** under "Hardware accelerator."
# 
# Let's start by installing the necessary libraries.

# In[1]:


#get_ipython().system('pip install transformers datasets sentence-transformers scikit-learn --upgrade -q')


# ##  Load the Dataset
# 
# We'll use the **"ChatDoctor-HealthCareMagic-100k"** dataset from the Hugging Face Datasets library. This dataset contains 100,000 real-world patient-doctor interactions, providing a rich knowledge base for our RAG system.

# In[2]:


from datasets import load_dataset

dataset = load_dataset("lavita/ChatDoctor-HealthCareMagic-100k")


# ## Step 3: Initialize the Models
# 
# We need to initialize two models:
# 
# 1. **HuatuoGPT-o1**: The medical LLM for generating responses.
# 2. **Sentence Transformer**: An embedding model for creating vector representations of text, which we'll use for retrieval.

# In[3]:


import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from sentence_transformers import SentenceTransformer

# Initialize HuatuoGPT-o1
model_name = "FreedomIntelligence/HuatuoGPT-o1-7B"
model = AutoModelForCausalLM.from_pretrained(
    model_name, torch_dtype="auto", device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)

# Initialize Sentence Transformer
embed_model = SentenceTransformer("all-MiniLM-L6-v2")


# ## Prepare the Knowledge Base
# 
# We'll create a knowledge base by generating embeddings for the combined question-answer pairs from the dataset.

# In[4]:


import pandas as pd
import numpy as np

# Convert dataset to DataFrame
df = pd.DataFrame(dataset["train"])

# Combine question and answer for context
df["combined"] = df["input"] + " " + df["output"]

# Generate embeddings
st.write("Generating embeddings for the knowledge base...")
embeddings = embed_model.encode(
    df["combined"].tolist(), show_progress_bar=True, batch_size=128
)
st.write("Embeddings generated!")


# ## Implement Retrieval
# 
# This function retrieves the `k` most relevant contexts to a given query using cosine similarity.

# In[5]:


from sklearn.metrics.pairwise import cosine_similarity

def retrieve_relevant_contexts(query: str, k: int = 3) -> list:
    """
    Retrieves the k most relevant contexts to a given query.

    Args:
        query (str): The user's medical query.
        k (int): The number of relevant contexts to retrieve.

    Returns:
        list: A list of dictionaries, each containing a relevant context.
    """
    # Generate query embedding
    query_embedding = embed_model.encode([query])[0]

    # Calculate similarities
    similarities = cosine_similarity([query_embedding], embeddings)[0]

    # Get top k similar contexts
    top_k_indices = np.argsort(similarities)[-k:][::-1]

    contexts = []
    for idx in top_k_indices:
        contexts.append(
            {
                "question": df.iloc[idx]["input"],
                "answer": df.iloc[idx]["output"],
                "similarity": similarities[idx],
            }
        )

    return contexts


# ## Implement Response Generation
# 
# This function generates a detailed response using the retrieved contexts.

# In[6]:


def generate_structured_response(query: str, contexts: list) -> str:
    """
    Generates a detailed response using the retrieved contexts.

    Args:
        query (str): The user's medical query.
        contexts (list): A list of relevant contexts.

    Returns:
        str: The generated response.
    """
    # Prepare prompt with retrieved contexts
    context_prompt = "\n".join(
        [
            f"Reference {i+1}:"
            f"\nQuestion: {ctx['question']}"
            f"\nAnswer: {ctx['answer']}"
            for i, ctx in enumerate(contexts)
        ]
    )

    prompt = f"""Based on the following references and your medical knowledge, provide a detailed response:

References:
{context_prompt}

Question: {query}

By considering:
1. The key medical concepts in the question.
2. How the reference cases relate to this question.
3. What medical principles should be applied.
4. Any potential complications or considerations.

Give the final response:
"""

    # Generate response
    messages = [{"role": "user", "content": prompt}]
    inputs = tokenizer(
        tokenizer.apply_chat_template(
            messages, tokenize=False, add_generation_prompt=True
        ),
        return_tensors="pt",
    ).to(model.device)

    outputs = model.generate(
        **inputs,
        max_new_tokens=1024,
        temperature=0.7,
        num_beams=1,
        do_sample=True,
    )

    response = tokenizer.decode(outputs[0], skip_special_tokens=True)

    # Extract the final response portion
    final_response = response.split("Give the final response:\n")[-1]

    return final_response


# ## Putting It All Together
# 
# Let's define a function to process a query end-to-end and then use it with an example.

# In[7]:


def process_query(query: str, k: int = 3) -> tuple:
    """
    Processes a medical query end-to-end.

    Args:
        query (str): The user's medical query.
        k (int): The number of relevant contexts to retrieve.

    Returns:
        tuple: The generated response and the retrieved contexts.
    """
    contexts = retrieve_relevant_contexts(query, k)
    response = generate_structured_response(query, contexts)
    return response, contexts

# Example query
query = "I've been experiencing persistent headaches and dizziness for the past week. What could be the cause?"

# Process query
response, contexts = process_query(query)

# Print results
st.write("\nQuery:", query)
st.write("\nRelevant Contexts:")
for i, ctx in enumerate(contexts, 1):
    st.write(f"\nReference {i} (Similarity: {ctx['similarity']:.3f}):")
    st.write(f"Q: {ctx['question']}")
    st.write(f"A: {ctx['answer']}")

st.write("\nGenerated Response:")
st.write(response)


# ## Conclusion
# 
# This notebook demonstrates a practical application of HuatuoGPT-o1 for medical question answering using RAG and reasoning. By combining retrieval from a relevant knowledge base with the advanced reasoning capabilities of HuatuoGPT-o1, we can build a system that provides detailed and well-structured answers to complex medical queries.
# 
# You can further enhance this system by:
# 
# *   Experimenting with different values of `k` (number of retrieved contexts).
# *   Fine-tuning HuatuoGPT-o1 on a specific medical domain.
# *   Evaluating the system's performance using medical benchmarks.
# *   Adding a user interface for easier interaction.
# *   Improving upon existing code by handling edge cases.
# 
# Feel free to adapt and expand upon this example to create even more powerful and helpful medical AI applications!