File size: 7,947 Bytes
f033bde
 
 
 
 
 
002a515
f033bde
 
002a515
f033bde
 
 
 
 
 
 
 
 
 
 
002a515
f033bde
 
 
 
 
 
 
 
002a515
f033bde
 
 
 
 
 
 
 
 
002a515
540a829
f033bde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56959f4
f033bde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
540a829
f033bde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
540a829
f033bde
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
540a829
f033bde
002a515
f033bde
002a515
f033bde
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import gradio as gr
from transformers import pipeline
import numpy as np
from PIL import Image
import io
import base64

# Initialize sentiment analysis pipeline (lightweight for CPU)
sentiment_analyzer = pipeline("sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")

# Mock text-to-image function (CPU-friendly)
def generate_mock_image(text_prompt, width=200, height=200):
    img_array = np.zeros((height, width, 3), dtype=np.uint8)
    for i in range(height):
        for j in range(width):
            img_array[i, j] = [(i % 255), (j % 255), ((i + j) % 255)]  # RGB gradient
    img = Image.fromarray(img_array)
    buffered = io.BytesIO()
    img.save(buffered, format="PNG")
    img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
    return f"data:image/png;base64,{img_str}"

# Sentiment analysis function
def analyze_sentiment(text):
    if not text.strip():
        return "Please enter some text."
    result = sentiment_analyzer(text)[0]
    label = result['label']
    score = result['score']
    return f"Sentiment: {label} (Confidence: {score:.2%})"

# Chatbot feedback function
def chatbot_response(user_feedback, chat_history):
    if not user_feedback.strip():
        return chat_history, "Please provide feedback."
    chat_history.append((
        f"**You**: {user_feedback}", 
        f"**Bot**: Thanks for your feedback! I understood: '{user_feedback}'."
    ))
    return chat_history, ""

# Custom CSS for dark grey, minimalist UI
custom_css = """
body, .gradio-container {
    background: #2d2d2d !important;
    color: #d4d4d4 !important;
    font-family: 'Inter', -apple-system, sans-serif;
    margin: 0;
    padding: 20px;
}
.tab-nav button {
    background: #3a3a3a !important;
    color: #a3a3a3 !important;
    border: none !important;
    padding: 12px 20px !important;
    border-radius: 8px 8px 0 0 !important;
    transition: background 0.3s, color 0.3s;
}
.tab-nav button:hover, .tab-nav button[aria-selected="true"] {
    background: #4a4a4a !important;
    color: #e0e0e0 !important;
}
.block, .gr-panel {
    background: #353535 !important;
    border-radius: 10px !important;
    padding: 20px !important;
    box-shadow: 0 4px 10px rgba(0, 0, 0, 0.25);
    margin-bottom: 20px;
}
input, textarea, .gr-textbox {
    background: #2a2a2a !important;
    color: #d4d4d4 !important;
    border: 1px solid #4a4a4a !important;
    border-radius: 8px !important;
    padding: 12px !important;
    transition: border-color 0.2s;
}
input:focus, textarea:focus {
    border-color: #6b6b6b !important;
    outline: none;
}
button {
    background: #4a4a4a !important;
    color: #e0e0e0 !important;
    border: none !important;
    border-radius: 8px !important;
    padding: 12px 24px !important;
    font-weight: 600;
    transition: background 0.2s, transform 0.2s;
}
button:hover {
    background: #5a5a5a !important;
    transform: scale(1.03);
}
.gr-image img {
    border-radius: 8px !important;
    border: 2px solid #4a4a4a !important;
    max-width: 100%;
}
.gr-chatbot .message {
    border-radius: 8px !important;
    padding: 12px !important;
    margin: 8px 0 !important;
}
.gr-chatbot .message:nth-child(odd) {
    background: #3a3a3a !important; /* User messages */
}
.gr-chatbot .message:nth-child(even) {
    background: #2a2a2a !important; /* Bot messages */
}
h1, h2, h3 {
    color: #b3b3b3 !important;
    font-weight: 600;
}
@media (max-width: 768px) {
    .gradio-container {
        padding: 10px;
    }
    .block {
        padding: 15px !important;
    }
    button {
        padding: 10px 20px !important;
    }
    .tab-nav button {
        padding: 10px 15px !important;
        font-size: 14px;
    }
}
"""

# Main Gradio app with Tabs
with gr.Blocks(css=custom_css) as demo:
    gr.Markdown(
        """
        # ๐Ÿ› ๏ธ Interactive AI Dashboard
        Explore **Sentiment Analysis**, **Text-to-Image Generation**, and **Feedback Chatbot** in a sleek grey interface.
        Built for Hugging Face Spaces (free tier, CPU-only).
        """
    )
    
    with gr.Tabs():
        # Sentiment Analysis Tab
        with gr.Tab("Sentiment Analysis"):
            with gr.Row():
                with gr.Column(scale=3):
                    gr.Markdown("### ๐Ÿ“ Analyze Text Sentiment")
                    sentiment_input = gr.Textbox(
                        label="Your Text",
                        placeholder="Enter text like 'This app is awesome!'",
                        lines=4,
                        show_label=False
                    )
                    sentiment_button = gr.Button("Analyze", variant="primary")
                    sentiment_output = gr.Textbox(
                        label="Result",
                        interactive=False,
                        placeholder="Sentiment result will appear here..."
                    )
                with gr.Column(scale=2):
                    gr.Markdown("### Example Prompts")
                    gr.Examples(
                        examples=[
                            "Iโ€™m thrilled about this project!",
                            "Today feels a bit gloomy.",
                            "Programming is tough but rewarding!"
                        ],
                        inputs=sentiment_input
                    )
            sentiment_button.click(
                fn=analyze_sentiment,
                inputs=sentiment_input,
                outputs=sentiment_output,
                show_progress=True
            )
        
        # Text-to-Image Tab
        with gr.Tab("Text-to-Image"):
            with gr.Row():
                with gr.Column(scale=3):
                    gr.Markdown("### ๐Ÿ–ผ๏ธ Generate Mock Images")
                    image_prompt = gr.Textbox(
                        label="Image Prompt",
                        placeholder="Describe an image, e.g., 'Abstract colorful pattern'",
                        lines=3,
                        show_label=False
                    )
                    image_button = gr.Button("Generate", variant="primary")
                    image_output = gr.Image(
                        label="Generated Image",
                        type="pil",
                        interactive=False
                    )
                with gr.Column(scale=2):
                    gr.Markdown("### Info")
                    gr.Markdown(
                        "This mock generator creates gradient images to stay lightweight for the free tier."
                    )
            image_button.click(
                fn=generate_mock_image,
                inputs=image_prompt,
                outputs=image_output,
                show_progress=True
            )
        
        # Chatbot Tab
        with gr.Tab("Feedback Chatbot"):
            with gr.Row():
                with gr.Column():
                    gr.Markdown("### ๐Ÿ’ฌ Share Your Thoughts")
                    chatbot = gr.Chatbot(
                        label="Conversation",
                        bubble_full_width=False,
                        height=400
                    )
                    feedback_input = gr.Textbox(
                        label="Your Message",
                        placeholder="Type your feedback here...",
                        lines=2,
                        show_label=False
                    )
                    feedback_button = gr.Button("Send", variant="primary")
                    feedback_output = gr.Textbox(
                        label="Status",
                        interactive=False,
                        placeholder="Bot response status..."
                    )
            feedback_button.click(
                fn=chatbot_response,
                inputs=[feedback_input, chatbot],
                outputs=[chatbot, feedback_output],
                show_progress=True
            )

# Launch the app
if __name__ == "__main__":
    demo.launch()