Spaces:
Sleeping
Sleeping
Update README.md
Browse files
README.md
CHANGED
@@ -6,343 +6,110 @@ colorFrom: purple
|
|
6 |
colorTo: green
|
7 |
short_description: CX AI LLM
|
8 |
---
|
9 |
-
title: Customer Experience Bot Demo emoji: 🤖 colorFrom: blue colorTo: purple sdk: gradio sdk_version: "4.44.0" app_file: app.py pinned: false
|
10 |
|
|
|
11 |
|
|
|
12 |
|
|
|
13 |
|
14 |
-
|
15 |
|
16 |
-
|
17 |
|
18 |
-
|
|
|
|
|
19 |
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
|
|
|
|
|
23 |
|
|
|
24 |
|
|
|
25 |
|
|
|
|
|
|
|
26 |
|
|
|
27 |
|
28 |
-
|
29 |
|
|
|
|
|
|
|
|
|
|
|
30 |
|
|
|
31 |
|
32 |
-
|
33 |
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
|
|
35 |
|
36 |
-
|
|
|
|
|
|
|
37 |
|
38 |
-
|
39 |
|
40 |
-
|
|
|
|
|
|
|
|
|
41 |
|
42 |
-
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
-
|
45 |
|
|
|
|
|
|
|
|
|
|
|
46 |
|
|
|
47 |
|
|
|
48 |
|
|
|
49 |
|
50 |
-
|
51 |
|
|
|
52 |
|
|
|
|
|
53 |
|
54 |
-
|
55 |
|
|
|
|
|
|
|
|
|
56 |
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
Null Handling: Drops rows with missing question or answer using df.dropna().
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
Duplicate Removal: Eliminates redundant FAQs via df[~df['question'].duplicated()].
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
Short Entry Filtering: Excludes questions <10 chars or answers <20 chars with df[(df['question'].str.len() >= 10) & (df['answer'].str.len() >= 20)].
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
Malformed Detection: Uses regex ([!?]{2,}|\b(Invalid|N/A)\b) to filter invalid questions.
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
Standardization: Normalizes text (e.g., mo to month) and fills missing language with en.
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
Output: Generates cleaned_call_center_faqs.csv for downstream modeling, with detailed cleanup stats (e.g., nulls, duplicates removed).
|
81 |
-
|
82 |
-
Enterprise-Grade Modeling Compatibility
|
83 |
-
|
84 |
-
The cleaned CSV is optimized for:
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
Amazon SageMaker: Ready for training BERT-based models (e.g., bert-base-uncased) for intent classification or FAQ retrieval, deployable via SageMaker JumpStart.
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
Azure AI: Compatible with Azure Machine Learning pipelines for fine-tuning models like DistilBERT in Azure Blob Storage, enabling scalable CX automation.
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
LLM Integration: While not used in this free-tier demo, the cleaned data supports fine-tuning LLMs (e.g., distilgpt2) for generative tasks, leveraging your FastAPI experience for API-driven inference.
|
99 |
-
|
100 |
-
Performance Monitoring and Visualization
|
101 |
-
|
102 |
-
The bot includes a performance monitoring suite:
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
Latency Tracking: Measures embedding, retrieval, and generation times using time.perf_counter(), reported in milliseconds.
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
Accuracy Metrics: Simulates retrieval accuracy (95% if FAQs retrieved, 0% otherwise) for demo purposes.
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
Visualization: Uses Matplotlib and Seaborn to plot a dual-axis chart (rag_plot.png):
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
Bar Chart: Latency (ms) per stage (Embedding, Retrieval, Generation).
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
Line Chart: Accuracy (%) per stage, with a muted palette for professional aesthetics.
|
127 |
-
|
128 |
-
Gradio Interface for Interactive CX
|
129 |
-
|
130 |
-
The bot is deployed via Gradio, providing a user-friendly interface:
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
Input: Text query field for user inputs (e.g., “How do I reset my password?”).
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
Outputs:
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
Bot response (e.g., “Go to the login page, click ‘Forgot Password,’...”).
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
Retrieved FAQs with question-answer pairs.
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
Cleanup stats (e.g., “Cleaned FAQs: 6; removed 4 junk entries”).
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
RAG pipeline plot for latency and accuracy.
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
Styling: Custom dark theme CSS (#2a2a2a background, blue buttons) for a sleek, enterprise-ready UI.
|
163 |
-
|
164 |
-
Setup
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
Clone this repository to a Hugging Face Space (free tier, public).
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
Add requirements.txt with dependencies (gradio==4.44.0, pandas==2.2.3, etc.).
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
Upload app.py (embeds call center FAQs for seamless deployment).
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
Configure to run with Python 3.9+, CPU hardware (no GPU).
|
183 |
-
|
184 |
-
Usage
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
Query: Enter a question in the Gradio UI (e.g., “How do I reset my password?”).
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
Output:
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
Response: Contextually relevant answer from retrieved FAQs.
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
Retrieved FAQs: Top-k question-answer pairs.
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
Cleanup Stats: Detailed breakdown of junk data removal (nulls, duplicates, short entries, malformed).
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
RAG Plot: Visual metrics for latency and accuracy.
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
Example:
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
Query: “How do I reset my password?”
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
Response: “Go to the login page, click ‘Forgot Password,’ and follow the email instructions.”
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
Cleanup Stats: “Cleaned FAQs: 6; removed 4 junk entries: 2 nulls, 1 duplicates, 1 short, 0 malformed”
|
231 |
-
|
232 |
-
Call Center Data Cleanup
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
Preprocessing Pipeline:
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
Null Handling: Eliminates incomplete entries with df.dropna().
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
Duplicate Removal: Ensures uniqueness via df[~df['question'].duplicated()].
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
Short Entry Filtering: Maintains quality with length-based filtering.
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
Malformed Detection: Uses regex to identify and remove invalid queries.
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
Standardization: Normalizes text and metadata for consistency.
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
Impact: Produces high-fidelity FAQs for RAG/CAG pipelines, critical for call center CX automation.
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
Modeling Output: The cleaned cleaned_call_center_faqs.csv is ready for:
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
SageMaker: Fine-tuning BERT models for intent classification or FAQ retrieval.
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
Azure AI: Training DistilBERT in Azure ML for scalable CX automation.
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
LLM Fine-Tuning: Supports advanced generative tasks with LLMs via FastAPI endpoints.
|
283 |
-
|
284 |
-
Technical Details
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
Stack:
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
Pandas: Data wrangling and preprocessing for call center CSVs.
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
Hugging Face Transformers: all-MiniLM-L6-v2 for semantic embeddings.
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
FAISS: Vectorized similarity search with L2 distance metrics.
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
Gradio: Interactive UI for real-time CX demos.
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
Matplotlib/Seaborn: Performance visualization with dual-axis plots.
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
FastAPI Compatibility: Designed with API-driven inference in mind, leveraging your experience with FastAPI for scalable deployments (e.g., RESTful endpoints for RAG inference).
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
Free Tier Optimization: Lightweight with CPU-only dependencies, no GPU required.
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
Extensibility: Ready for integration with enterprise CRMs (e.g., Salesforce) via FastAPI, and cloud deployments on AWS Lambda or Azure Functions.
|
325 |
-
|
326 |
-
Purpose
|
327 |
-
|
328 |
-
This demo showcases expertise in AI-driven CX automation, with a focus on call center data quality, built on over 5 years of experience in AI, NLP, and enterprise-grade deployments. It demonstrates the power of RAG and CAG pipelines, Pandas-based data preprocessing, and scalable modeling for SageMaker and Azure AI, making it ideal for advanced CX solutions in call center environments.
|
329 |
-
|
330 |
-
Future Enhancements
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
LLM Integration: Incorporate distilgpt2 or t5-small (from your past projects) for generative responses, fine-tuned on cleaned call center data.
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
FastAPI Deployment: Expose RAG pipeline via FastAPI endpoints for production-grade inference.
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
Multilingual Scaling: Expand language support (e.g., French, German) using Hugging Face’s multilingual models.
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
Real-Time Monitoring: Add Prometheus metrics for latency/accuracy in production environments.
|
|
|
6 |
colorTo: green
|
7 |
short_description: CX AI LLM
|
8 |
---
|
|
|
9 |
|
10 |
+
# Internal RAG CX Data Preprocessing Demo
|
11 |
|
12 |
+
A robust data preprocessing pipeline for Retrieval-Augmented Generation (RAG) and Context-Augmented Generation (CAG) systems, deployed on Hugging Face as a Model repository (free tier). Built with over 5 years of AI expertise since 2020, this demo focuses on cleaning and preparing call center datasets for enterprise-grade CX applications in SaaS, HealthTech, FinTech, and eCommerce. It integrates advanced data wrangling with Pandas, ensuring high-quality FAQs for downstream RAG/CAG pipelines, and is compatible with Amazon SageMaker and Azure AI for scalable modeling.
|
13 |
|
14 |
+
## Technical Architecture
|
15 |
|
16 |
+
### Data Preprocessing Pipeline
|
17 |
|
18 |
+
The core of this demo is a comprehensive data preprocessing pipeline designed to clean raw call center datasets:
|
19 |
|
20 |
+
- **Data Ingestion**:
|
21 |
+
- Parses CSVs with `pd.read_csv`, using `io.StringIO` for embedded data, with explicit `quotechar` and `escapechar` to handle complex strings.
|
22 |
+
- Handles datasets with columns: `call_id`, `question`, `answer`, `language`.
|
23 |
|
24 |
+
- **Junk Data Cleanup**:
|
25 |
+
- **Null Handling**: Drops rows with missing `question` or `answer` using `df.dropna()`.
|
26 |
+
- **Duplicate Removal**: Eliminates redundant FAQs via `df[~df['question'].duplicated()]`.
|
27 |
+
- **Short Entry Filtering**: Excludes questions <10 chars or answers <20 chars with `df[(df['question'].str.len() >= 10) & (df['answer'].str.len() >= 20)]`.
|
28 |
+
- **Malformed Detection**: Uses regex (`[!?]{2,}|\b(Invalid|N/A)\b`) to filter invalid questions.
|
29 |
+
- **Standardization**: Normalizes text (e.g., "mo" to "month") and fills missing `language` with "en".
|
30 |
|
31 |
+
- **Output**:
|
32 |
+
- Generates `cleaned_call_center_faqs.csv` for downstream modeling.
|
33 |
+
- Provides cleanup stats: nulls removed, duplicates removed, short entries filtered, malformed entries detected.
|
34 |
|
35 |
+
### Enterprise-Grade Modeling Compatibility
|
36 |
|
37 |
+
The cleaned dataset is optimized for:
|
38 |
|
39 |
+
- **Amazon SageMaker**: Ready for training BERT-based models (e.g., `bert-base-uncased`) for intent classification or FAQ retrieval, deployable via SageMaker JumpStart.
|
40 |
+
- **Azure AI**: Compatible with Azure Machine Learning pipelines for fine-tuning models like DistilBERT in Azure Blob Storage, enabling scalable CX automation.
|
41 |
+
- **LLM Integration**: Supports fine-tuning LLMs (e.g., `distilgpt2`) for generative tasks, leveraging your FastAPI experience for API-driven inference.
|
42 |
|
43 |
+
## Performance Monitoring and Visualization
|
44 |
|
45 |
+
The demo includes a performance monitoring suite:
|
46 |
|
47 |
+
- **Processing Time Tracking**: Measures data ingestion, cleaning, and output times using `time.perf_counter()`, reported in milliseconds.
|
48 |
+
- **Cleanup Metrics**: Tracks the number of nulls, duplicates, short entries, and malformed entries removed.
|
49 |
+
- **Visualization**: Uses Matplotlib to plot a bar chart (`cleanup_stats.png`):
|
50 |
+
- Bars: Number of entries removed per category (Nulls, Duplicates, Short, Malformed).
|
51 |
+
- Palette: Professional muted colors for enterprise aesthetics.
|
52 |
|
53 |
+
## Gradio Interface for Interactive Demo
|
54 |
|
55 |
+
The demo is accessible via Gradio, providing an interactive data preprocessing experience:
|
56 |
|
57 |
+
- **Input**: Upload a sample call center CSV or use the embedded demo dataset.
|
58 |
+
- **Outputs**:
|
59 |
+
- **Cleaned Dataset**: Download `cleaned_call_center_faqs.csv`.
|
60 |
+
- **Cleanup Stats**: Detailed breakdown (e.g., “Cleaned FAQs: 6; removed 4 junk entries: 2 nulls, 1 duplicates, 1 short, 0 malformed”).
|
61 |
+
- **Performance Plot**: Visual metrics for processing time and cleanup stats.
|
62 |
+
- **Styling**: Custom dark theme CSS (`#2a2a2a` background, blue buttons) for a sleek, enterprise-ready UI.
|
63 |
|
64 |
+
## Setup
|
65 |
|
66 |
+
- Clone this repository to a Hugging Face Model repository (free tier, public).
|
67 |
+
- Add `requirements.txt` with dependencies (`gradio==4.44.0`, `pandas==2.2.3`, `matplotlib==3.9.2`, etc.).
|
68 |
+
- Upload `app.py` (includes embedded demo dataset for seamless deployment).
|
69 |
+
- Configure to run with Python 3.9+, CPU hardware (no GPU).
|
70 |
|
71 |
+
## Usage
|
72 |
|
73 |
+
- **Upload CSV**: Provide a call center CSV in the Gradio UI, or use the default demo dataset.
|
74 |
+
- **Output**:
|
75 |
+
- **Cleaned Dataset**: Download the processed `cleaned_call_center_faqs.csv`.
|
76 |
+
- **Cleanup Stats**: “Cleaned FAQs: 6; removed 4 junk entries: 2 nulls, 1 duplicates, 1 short, 0 malformed”.
|
77 |
+
- **Performance Plot**: Visual metrics for processing time and cleanup stats.
|
78 |
|
79 |
+
**Example**:
|
80 |
+
- **Input CSV**: Sample dataset with 10 FAQs, including 2 nulls, 1 duplicate, 1 short entry.
|
81 |
+
- **Output**:
|
82 |
+
- Cleaned Dataset: 6 FAQs in `cleaned_call_center_faqs.csv`.
|
83 |
+
- Cleanup Stats: “Cleaned FAQs: 6; removed 4 junk entries: 2 nulls, 1 duplicates, 1 short, 0 malformed”.
|
84 |
+
- Plot: Processing Time (Ingestion: 50ms, Cleaning: 30ms, Output: 10ms), Cleanup Stats (Nulls: 2, Duplicates: 1, Short: 1, Malformed: 0).
|
85 |
|
86 |
+
## Technical Details
|
87 |
|
88 |
+
**Stack**:
|
89 |
+
- **Pandas**: Data wrangling and preprocessing for call center CSVs.
|
90 |
+
- **Gradio**: Interactive UI for real-time data preprocessing demos.
|
91 |
+
- **Matplotlib**: Performance visualization with bar charts.
|
92 |
+
- **FastAPI Compatibility**: Designed with API-driven preprocessing in mind, leveraging your experience with FastAPI for scalable deployments.
|
93 |
|
94 |
+
**Free Tier Optimization**: Lightweight with CPU-only dependencies, no GPU required.
|
95 |
|
96 |
+
**Extensibility**: Ready for integration with RAG/CAG pipelines, and cloud deployments on AWS Lambda or Azure Functions.
|
97 |
|
98 |
+
## Purpose
|
99 |
|
100 |
+
This demo showcases expertise in data preprocessing for AI-driven CX automation, focusing on call center data quality. Built on over 5 years of experience in AI, data engineering, and enterprise-grade deployments, it demonstrates the power of Pandas-based data cleaning for RAG/CAG pipelines, making it ideal for advanced CX solutions in call center environments.
|
101 |
|
102 |
+
## Latest Update
|
103 |
|
104 |
+
**Status Update**: Placeholder update - January 01, 2025 📝
|
105 |
+
- Placeholder update text.
|
106 |
|
107 |
+
## Future Enhancements
|
108 |
|
109 |
+
- **Real-Time Streaming**: Add support for real-time data streaming from Kafka for live preprocessing.
|
110 |
+
- **FastAPI Deployment**: Expose preprocessing pipeline via FastAPI endpoints for production-grade use.
|
111 |
+
- **Advanced Validation**: Implement stricter data validation rules using machine learning-based outlier detection.
|
112 |
+
- **Cloud Integration**: Enhance compatibility with AWS Glue or Azure Data Factory for enterprise data pipelines.
|
113 |
|
114 |
+
**Website**: https://ghostainews.com/
|
115 |
+
**Discord**: https://discord.gg/BfA23aYz
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|