Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,168 +1,135 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from gliner import GLiNER
|
| 3 |
-
from vllm import LLM, SamplingParams
|
| 4 |
-
from sentence_transformers import SentenceTransformer
|
| 5 |
-
import faiss
|
| 6 |
-
import numpy as np
|
| 7 |
-
import json
|
| 8 |
import torch
|
| 9 |
-
import requests
|
| 10 |
-
import threading
|
| 11 |
-
from queue import Queue
|
| 12 |
import logging
|
| 13 |
-
import
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
-
#
|
| 16 |
-
logging.basicConfig(level=logging.
|
| 17 |
logger = logging.getLogger(__name__)
|
| 18 |
|
| 19 |
-
# Initialize NVML for GPU debugging
|
| 20 |
try:
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
raise RuntimeError("Cannot initialize NVML. Check NVIDIA drivers.")
|
| 31 |
-
|
| 32 |
-
# Verify CUDA
|
| 33 |
-
if not torch.cuda.is_available():
|
| 34 |
-
logger.error("CUDA not available")
|
| 35 |
-
raise RuntimeError("No GPU detected. Ensure H200 GPU is available.")
|
| 36 |
-
logger.info(f"CUDA Version: {torch.version.cuda}")
|
| 37 |
-
logger.info(f"GPU Detected: {torch.cuda.get_device_name(0)}")
|
| 38 |
-
logger.info(f"Device Count: {torch.cuda.device_count()}")
|
| 39 |
-
|
| 40 |
-
# Load legal corpus
|
| 41 |
-
with open("legal_corpus.json", "r", encoding="utf-8") as f:
|
| 42 |
-
corpus = json.load(f)
|
| 43 |
-
documents = [item["text"] for item in corpus]
|
| 44 |
-
|
| 45 |
-
# Initialize sentence transformer (GPU)
|
| 46 |
-
embedder = SentenceTransformer("all-MiniLM-L6-v2", device="cuda")
|
| 47 |
-
embeddings = embedder.encode(documents, convert_to_numpy=True)
|
| 48 |
-
|
| 49 |
-
# Initialize FAISS-GPU
|
| 50 |
-
dimension = embeddings.shape[1]
|
| 51 |
-
index = faiss.IndexFlatL2(dimension)
|
| 52 |
-
index.add(embeddings)
|
| 53 |
-
|
| 54 |
-
# Initialize GLiNER (GPU)
|
| 55 |
-
gliner_model = GLiNER.from_pretrained("NAMAA-Space/gliner_arabic-v2.1", load_tokenizer=True)
|
| 56 |
-
gliner_model = gliner_model.cuda()
|
| 57 |
-
|
| 58 |
-
# Initialize LLM (default to Qwen2-7B-Instruct-AWQ)
|
| 59 |
-
use_qwq_32b = False # Set to True if H200 detection is fixed
|
| 60 |
-
model_name = "Qwen/Qwen2-7B-Instruct-AWQ" if not use_qwq_32b else "Qwen/QwQ-32B"
|
| 61 |
-
try:
|
| 62 |
-
llm = LLM(
|
| 63 |
-
model=model_name,
|
| 64 |
-
quantization="awq",
|
| 65 |
-
max_model_len=4096,
|
| 66 |
-
gpu_memory_utilization=0.9,
|
| 67 |
-
device="cuda"
|
| 68 |
-
)
|
| 69 |
-
logger.info(f"Loaded LLM: {model_name}")
|
| 70 |
-
except Exception as e:
|
| 71 |
-
logger.error(f"Failed to initialize LLM: {str(e)}")
|
| 72 |
-
raise
|
| 73 |
-
|
| 74 |
-
sampling_params = SamplingParams(temperature=0.7, max_tokens=512)
|
| 75 |
-
|
| 76 |
-
def fetch_external_legal_data(query, queue):
|
| 77 |
-
"""Fetch external legal data via HTTP request (mock API)."""
|
| 78 |
-
try:
|
| 79 |
-
response = requests.get(
|
| 80 |
-
"https://api.example.com/legal",
|
| 81 |
-
params={"query": query},
|
| 82 |
-
timeout=5
|
| 83 |
)
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
Insight:"""
|
| 120 |
-
outputs = llm.generate([prompt], sampling_params)
|
| 121 |
-
return outputs[0].outputs[0].text
|
| 122 |
-
|
| 123 |
-
def main_interface(text, entity_types):
|
| 124 |
-
"""Main Gradio interface with threading."""
|
| 125 |
-
ner_queue = Queue()
|
| 126 |
-
external_queue = Queue()
|
| 127 |
-
|
| 128 |
-
ner_thread = threading.Thread(target=run_ner, args=(text, entity_types, ner_queue))
|
| 129 |
-
external_thread = threading.Thread(target=fetch_external_legal_data, args=(text, external_queue))
|
| 130 |
-
|
| 131 |
-
ner_thread.start()
|
| 132 |
-
external_thread.start()
|
| 133 |
-
|
| 134 |
-
ner_thread.join()
|
| 135 |
-
external_thread.join()
|
| 136 |
-
|
| 137 |
-
ner_result = ner_queue.get()
|
| 138 |
-
external_data = external_queue.get()
|
| 139 |
-
|
| 140 |
-
retrieved_docs = retrieve_documents(text)
|
| 141 |
-
|
| 142 |
-
insight = generate_legal_insight(text, ner_result, retrieved_docs, external_data)
|
| 143 |
-
|
| 144 |
-
return ner_result, retrieved_docs, external_data, insight
|
| 145 |
-
|
| 146 |
-
# Gradio interface
|
| 147 |
-
with gr.Blocks(theme=gr.themes.Monochrome()) as demo:
|
| 148 |
-
gr.Markdown("# Arabic Legal Demo: NER & RAG with GLiNER and LLM")
|
| 149 |
-
with gr.Row():
|
| 150 |
-
text_input = gr.Textbox(label="Arabic Legal Text", lines=5, placeholder="Enter Arabic legal text...")
|
| 151 |
-
entity_types = gr.Textbox(
|
| 152 |
-
label="Entity Types (comma-separated)",
|
| 153 |
-
value="person,law,organization",
|
| 154 |
-
placeholder="e.g., person,law,organization"
|
| 155 |
)
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 167 |
|
| 168 |
-
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
import torch
|
|
|
|
|
|
|
|
|
|
| 3 |
import logging
|
| 4 |
+
from transformers import AutoTokenizer, AutoModel
|
| 5 |
+
from diffusers import DiffusionPipeline
|
| 6 |
+
import soundfile as sf
|
| 7 |
+
import numpy as np
|
| 8 |
|
| 9 |
+
# Set up logging to debug startup issues
|
| 10 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 11 |
logger = logging.getLogger(__name__)
|
| 12 |
|
|
|
|
| 13 |
try:
|
| 14 |
+
# Load text tokenizer and embedding model (umt5-base)
|
| 15 |
+
def load_text_processor():
|
| 16 |
+
logger.info("Loading text processor (umt5-base)...")
|
| 17 |
+
tokenizer = AutoTokenizer.from_pretrained("./umt5-base")
|
| 18 |
+
text_model = AutoModel.from_pretrained(
|
| 19 |
+
"./umt5-base",
|
| 20 |
+
use_safetensors=True,
|
| 21 |
+
torch_dtype=torch.float16,
|
| 22 |
+
device_map="auto"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
)
|
| 24 |
+
logger.info("Text processor loaded successfully.")
|
| 25 |
+
return tokenizer, text_model
|
| 26 |
+
|
| 27 |
+
# Load the transformer backbone (phantomstep_transformer)
|
| 28 |
+
def load_transformer():
|
| 29 |
+
logger.info("Loading transformer (phantomstep_transformer)...")
|
| 30 |
+
transformer = DiffusionPipeline.from_pretrained(
|
| 31 |
+
"./phantomstep_transformer",
|
| 32 |
+
use_safetensors=True,
|
| 33 |
+
torch_dtype=torch.float16,
|
| 34 |
+
device_map="auto"
|
| 35 |
+
)
|
| 36 |
+
logger.info("Transformer loaded successfully.")
|
| 37 |
+
return transformer
|
| 38 |
+
|
| 39 |
+
# Load the DCAE for audio encoding/decoding (phantomstep_dcae)
|
| 40 |
+
def load_dcae():
|
| 41 |
+
logger.info("Loading DCAE (phantomstep_dcae)...")
|
| 42 |
+
dcae = DiffusionPipeline.from_pretrained(
|
| 43 |
+
"./phantomstep_dcae",
|
| 44 |
+
use_safetensors=True,
|
| 45 |
+
torch_dtype=torch.float16,
|
| 46 |
+
device_map="auto"
|
| 47 |
+
)
|
| 48 |
+
logger.info("DCAE loaded successfully.")
|
| 49 |
+
return dcae
|
| 50 |
+
|
| 51 |
+
# Load the vocoder for audio synthesis (phantomstep_vocoder)
|
| 52 |
+
def load_vocoder():
|
| 53 |
+
logger.info("Loading vocoder (phantomstep_vocoder)...")
|
| 54 |
+
vocoder = DiffusionPipeline.from_pretrained(
|
| 55 |
+
"./phantomstep_vocoder",
|
| 56 |
+
use_safetensors=True,
|
| 57 |
+
torch_dtype=torch.float16,
|
| 58 |
+
device_map="auto"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 59 |
)
|
| 60 |
+
logger.info("Vocoder loaded successfully.")
|
| 61 |
+
return vocoder
|
| 62 |
+
|
| 63 |
+
# Generate music from a text prompt
|
| 64 |
+
def generate_music(prompt, duration=20, seed=42):
|
| 65 |
+
logger.info(f"Generating music with prompt: {prompt}, duration: {duration}, seed: {seed}")
|
| 66 |
+
torch.manual_seed(seed)
|
| 67 |
+
|
| 68 |
+
# Load all components
|
| 69 |
+
tokenizer, text_model = load_text_processor()
|
| 70 |
+
transformer = load_transformer()
|
| 71 |
+
dcae = load_dcae()
|
| 72 |
+
vocoder = load_vocoder()
|
| 73 |
+
|
| 74 |
+
# Step 1: Process text prompt to embeddings
|
| 75 |
+
logger.info("Processing text prompt to embeddings...")
|
| 76 |
+
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True)
|
| 77 |
+
inputs = {k: v.to(text_model.device) for k, v in inputs.items()}
|
| 78 |
+
with torch.no_grad():
|
| 79 |
+
embeddings = text_model(**inputs).last_hidden_state.mean(dim=1)
|
| 80 |
+
|
| 81 |
+
# Step 2: Pass embeddings through transformer
|
| 82 |
+
logger.info("Generating with transformer...")
|
| 83 |
+
transformer_output = transformer(
|
| 84 |
+
embeddings,
|
| 85 |
+
num_inference_steps=50,
|
| 86 |
+
audio_length_in_s=duration
|
| 87 |
+
).audios[0]
|
| 88 |
+
|
| 89 |
+
# Step 3: Decode audio features with DCAE
|
| 90 |
+
logger.info("Decoding with DCAE...")
|
| 91 |
+
dcae_output = dcae(
|
| 92 |
+
transformer_output,
|
| 93 |
+
num_inference_steps=50,
|
| 94 |
+
audio_length_in_s=duration
|
| 95 |
+
).audios[0]
|
| 96 |
+
|
| 97 |
+
# Step 4: Synthesize final audio with vocoder
|
| 98 |
+
logger.info("Synthesizing with vocoder...")
|
| 99 |
+
audio = vocoder(
|
| 100 |
+
dcae_output,
|
| 101 |
+
num_inference_steps=50,
|
| 102 |
+
audio_length_in_s=duration
|
| 103 |
+
).audios[0]
|
| 104 |
+
|
| 105 |
+
# Save audio to a file
|
| 106 |
+
output_path = "output.wav"
|
| 107 |
+
sf.write(output_path, audio, 22050) # 22kHz sample rate
|
| 108 |
+
logger.info("Music generation complete.")
|
| 109 |
+
return output_path
|
| 110 |
+
|
| 111 |
+
# Gradio interface
|
| 112 |
+
logger.info("Setting up Gradio interface...")
|
| 113 |
+
with gr.Blocks(title="PhantomStep: Text-to-Music Generation 🎵") as demo:
|
| 114 |
+
gr.Markdown("# PhantomStep by GhostAI 🚀")
|
| 115 |
+
gr.Markdown("Enter a text prompt to generate music! 🎶")
|
| 116 |
+
|
| 117 |
+
prompt_input = gr.Textbox(label="Text Prompt", placeholder="A jazzy piano melody with a fast tempo")
|
| 118 |
+
duration_input = gr.Slider(label="Duration (seconds)", minimum=10, maximum=60, value=20, step=1)
|
| 119 |
+
seed_input = gr.Number(label="Random Seed", value=42, precision=0)
|
| 120 |
+
generate_button = gr.Button("Generate Music")
|
| 121 |
+
|
| 122 |
+
audio_output = gr.Audio(label="Generated Music")
|
| 123 |
+
|
| 124 |
+
generate_button.click(
|
| 125 |
+
fn=generate_music,
|
| 126 |
+
inputs=[prompt_input, duration_input, seed_input],
|
| 127 |
+
outputs=audio_output
|
| 128 |
+
)
|
| 129 |
+
|
| 130 |
+
logger.info("Launching Gradio app...")
|
| 131 |
+
demo.launch(server_name="0.0.0.0", server_port=7860, ssr_mode=False)
|
| 132 |
|
| 133 |
+
except Exception as e:
|
| 134 |
+
logger.error(f"Failed to start the application: {str(e)}")
|
| 135 |
+
raise
|