Spaces:
Build error
Build error
Update README.md
Browse filesArabic Law LLM RAG
README.md
CHANGED
|
@@ -12,3 +12,37 @@ short_description: Arabic LAW RAG custom
|
|
| 12 |
---
|
| 13 |
|
| 14 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
---
|
| 13 |
|
| 14 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
Arabic Legal Demo: NER & RAG
|
| 18 |
+
|
| 19 |
+
A rough client demo for Arabic law, extracting legal entities and generating insights using NAMAA-Space/gliner_arabic-v2.1 and Qwen/QwQ-32B in a Retrieval-Augmented Generation (RAG) pipeline. Deployed as a Gradio app in a Hugging Face Space, optimized for NVIDIA H200 GPU.
|
| 20 |
+
Features
|
| 21 |
+
|
| 22 |
+
NER: Extracts entities (e.g., person, law) from Arabic legal texts using GLiNER.
|
| 23 |
+
RAG: Retrieves relevant legal context from a mock corpus using FAISS and generates insights with QwQ-32B.
|
| 24 |
+
UI: Gradio interface for inputting text, specifying entity types, and viewing entities, context, and insights.
|
| 25 |
+
|
| 26 |
+
Setup
|
| 27 |
+
|
| 28 |
+
Hardware: NVIDIA H200 GPU (141GB VRAM) in a custom/enterprise Hugging Face Space.
|
| 29 |
+
Files:
|
| 30 |
+
app.py: Gradio app with RAG pipeline.
|
| 31 |
+
requirements.txt: Dependencies.
|
| 32 |
+
legal_corpus.json: Mock legal corpus (replace with real data).
|
| 33 |
+
Run: Push files to a Hugging Face Space and deploy.
|
| 34 |
+
|
| 35 |
+
Usage
|
| 36 |
+
|
| 37 |
+
Enter Arabic legal text (e.g., "المادة ١٠١ من نظام العمل...").
|
| 38 |
+
Specify entity types (e.g., "person,law").
|
| 39 |
+
Click "Analyze" to see extracted entities, retrieved context, and legal insight.
|
| 40 |
+
|
| 41 |
+
Notes
|
| 42 |
+
|
| 43 |
+
Replace legal_corpus.json with a real legal dataset (e.g., MoJ).
|
| 44 |
+
QwQ-32B uses 4-bit AWQ quantization for H200 efficiency.
|
| 45 |
+
For non-H200 Spaces (e.g., T4), disable QwQ-32B or use heavier quantization.
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
|