Spaces:
Running
on
A10G
Running
on
A10G
File size: 5,083 Bytes
08e5ef1 7edda8b 2bede7c 7edda8b 2bede7c 75b770e 08e5ef1 2bede7c 7686e09 2bede7c 75b770e 2bede7c 7686e09 9781999 75b770e 9781999 7686e09 9781999 2bede7c 7edda8b 7686e09 7edda8b 7686e09 3f76eff 7edda8b 7686e09 7edda8b 2bede7c 7cd57ad 2bede7c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
import os
import shutil
import subprocess
import gradio as gr
from huggingface_hub import create_repo, HfApi
from huggingface_hub import snapshot_download
from huggingface_hub import whoami
from huggingface_hub import ModelCard
from textwrap import dedent
LLAMA_LIKE_ARCHS = ["MistralForCausalLM", "LlamaForCausalLM"]
def script_to_use(model_id, api):
info = api.model_info(model_id)
if info.config is None:
return None
arch = info.config.get("architectures", None)
if arch is None:
return None
arch = arch[0]
return "convert.py" if arch in LLAMA_LIKE_ARCHS else "convert-hf-to-gguf.py"
def process_model(model_id, q_method, hf_token):
MODEL_NAME = model_id.split('/')[-1]
fp16 = f"{MODEL_NAME}/{MODEL_NAME.lower()}.fp16.bin"
try:
api = HfApi(token=hf_token)
username = whoami(hf_token)["name"]
snapshot_download(repo_id=model_id, local_dir = f"{MODEL_NAME}", local_dir_use_symlinks=False)
print("Model downloaded successully!")
conversion_script = script_to_use(model_id, api)
fp16_conversion = f"python llama.cpp/{conversion_script} {MODEL_NAME} --outtype f16 --outfile {fp16}"
result = subprocess.run(fp16_conversion, shell=True, capture_output=True)
if result.returncode != 0:
raise Exception(f"Error converting to fp16: {result.stderr}")
print("Model converted to fp16 successully!")
qtype = f"{MODEL_NAME}/{MODEL_NAME.lower()}.{q_method.upper()}.gguf"
quantise_ggml = f"./llama.cpp/quantize {fp16} {qtype} {q_method}"
result = subprocess.run(quantise_ggml, shell=True, capture_output=True)
if result.returncode != 0:
raise Exception(f"Error quantizing: {result.stderr}")
print("Quantised successfully!")
# Create empty repo
repo_id = f"{username}/{MODEL_NAME}-{q_method}-GGUF"
repo_url = create_repo(
repo_id = repo_id,
repo_type="model",
exist_ok=True,
token=hf_token
)
print("Repo created successfully!")
card = ModelCard.load(model_id)
card.data.tags = ["llama-cpp"] if card.data.tags is None else card.data.tags + ["llama-cpp"]
card.text = dedent(
f"""
# {repo_id}
This model was converted to GGUF format from [`{model_id}`](https://huggingface.co/{model_id}) using llama.cpp.
Refer to the [original model card](https://huggingface.co/{model_id}) for more details on the model.
## Use with llama.cpp
```bash
brew install ggerganov/ggerganov/llama.cpp
```
```bash
llama-cli --hf-repo {repo_id} --model {qtype.split("/")[-1]} -p "The meaning to life and the universe is "
```
```bash
llama-server --hf-repo {repo_id} --model {qtype.split("/")[-1]} -c 2048
```
"""
)
card.save(os.path.join(MODEL_NAME, "README-new.md"))
api.upload_file(
path_or_fileobj=qtype,
path_in_repo=qtype.split("/")[-1],
repo_id=repo_id,
repo_type="model",
)
api.upload_file(
path_or_fileobj=f"{MODEL_NAME}/README-new.md",
path_in_repo="README.md",
repo_id=repo_id,
repo_type="model",
)
print("Uploaded successfully!")
return (
f'Find your repo <a href=\'{repo_url}\' target="_blank" style="text-decoration:underline">here</a>',
"llama.png",
)
except Exception as e:
return (f"Error: {e}", "error.png")
finally:
shutil.rmtree(MODEL_NAME, ignore_errors=True)
print("Folder cleaned up successfully!")
# Create Gradio interface
iface = gr.Interface(
fn=process_model,
inputs=[
gr.Textbox(
lines=1,
label="Hub Model ID",
info="Model repo ID",
placeholder="TinyLlama/TinyLlama-1.1B-Chat-v1.0",
value="TinyLlama/TinyLlama-1.1B-Chat-v1.0"
),
gr.Dropdown(
["Q2_K", "Q3_K_S", "Q3_K_M", "Q3_K_L", "Q4_0", "Q4_K_S", "Q4_K_M", "Q5_0", "Q5_K_S", "Q5_K_M", "Q6_K", "Q8_0"],
label="Quantization Method",
info="GGML quantisation type",
value="Q4_K_M",
filterable=False
),
gr.Textbox(
lines=1,
label="HF Write Token",
info="https://hf.co/settings/token",
type="password",
)
],
outputs=[
gr.Markdown(label="output"),
gr.Image(show_label=False),
],
title="Create your own GGUF Quants!",
description="Create GGUF quants from any Hugging Face repository! You need to specify a write token obtained in https://hf.co/settings/tokens.",
article="<p>Find your write token at <a href='https://huggingface.co/settings/tokens' target='_blank'>token settings</a></p>",
)
# Launch the interface
iface.launch(debug=True) |