gfhayworth commited on
Commit
37d88e4
·
1 Parent(s): 7d7fb11

Delete wiki_funcs.py

Browse files
Files changed (1) hide show
  1. wiki_funcs.py +0 -70
wiki_funcs.py DELETED
@@ -1,70 +0,0 @@
1
- from langchain.agents import tool
2
-
3
- from torch import tensor as torch_tensor
4
- from datasets import load_dataset
5
- from sentence_transformers import SentenceTransformer, CrossEncoder, util
6
-
7
- """# import models"""
8
-
9
- bi_encoder = SentenceTransformer(
10
- 'sentence-transformers/multi-qa-MiniLM-L6-cos-v1')
11
- bi_encoder.max_seq_length = 256 # Truncate long passages to 256 tokens
12
-
13
- # The bi-encoder will retrieve top_k documents. We use a cross-encoder, to re-rank the results list to improve the quality
14
- cross_encoder = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
15
-
16
- """# import datasets"""
17
- dataset = load_dataset("gfhayworth/wiki_mini", split='train')
18
-
19
- mypassages = list(dataset.to_pandas()['psg'])
20
-
21
- dataset_embed = load_dataset("gfhayworth/wiki_mini_embed", split='train')
22
-
23
- dataset_embed_pd = dataset_embed.to_pandas()
24
- mycorpus_embeddings = torch_tensor(dataset_embed_pd.values)
25
-
26
-
27
- def search(query, top_k=20, top_n=1):
28
- question_embedding = bi_encoder.encode(query, convert_to_tensor=True)
29
- hits = util.semantic_search(
30
- question_embedding, mycorpus_embeddings, top_k=top_k)
31
- hits = hits[0] # Get the hits for the first query
32
-
33
- ##### Re-Ranking #####
34
- cross_inp = [[query, mypassages[hit['corpus_id']]] for hit in hits]
35
- cross_scores = cross_encoder.predict(cross_inp)
36
-
37
- # Sort results by the cross-encoder scores
38
- for idx in range(len(cross_scores)):
39
- hits[idx]['cross-score'] = cross_scores[idx]
40
-
41
- hits = sorted(hits, key=lambda x: x['cross-score'], reverse=True)
42
- predictions = hits[:top_n]
43
- return predictions
44
- # for hit in hits[0:3]:
45
- # print("\t{:.3f}\t{}".format(hit['cross-score'], mypassages[hit['corpus_id']].replace("\n", " ")))
46
-
47
-
48
- def get_text(qry):
49
- # predictions = greg_search(qry)
50
- predictions = search(qry)
51
- prediction_text = []
52
- for hit in predictions:
53
- prediction_text.append("{}".format(mypassages[hit['corpus_id']]))
54
- return prediction_text
55
-
56
-
57
- @tool
58
- def mysearch(query: str) -> str:
59
- """Query our own datasets.
60
- """
61
- rslt = get_text(query)
62
- return '\n'.join(rslt)
63
-
64
-
65
- @tool
66
- def mygreetings(greeting: str) -> str:
67
- """Let us do our greetings
68
- """
69
-
70
- return "how are you?"