Spaces:
Runtime error
Runtime error
''' | |
modified by lihaoweicv | |
pytorch version | |
''' | |
''' | |
M-LSD | |
Copyright 2021-present NAVER Corp. | |
Apache License v2.0 | |
''' | |
import os | |
import numpy as np | |
import cv2 | |
import torch | |
from torch.nn import functional as F | |
def deccode_output_score_and_ptss(tpMap, topk_n = 200, ksize = 5): | |
''' | |
tpMap: | |
center: tpMap[1, 0, :, :] | |
displacement: tpMap[1, 1:5, :, :] | |
''' | |
b, c, h, w = tpMap.shape | |
assert b==1, 'only support bsize==1' | |
displacement = tpMap[:, 1:5, :, :][0] | |
center = tpMap[:, 0, :, :] | |
heat = torch.sigmoid(center) | |
hmax = F.max_pool2d( heat, (ksize, ksize), stride=1, padding=(ksize-1)//2) | |
keep = (hmax == heat).float() | |
heat = heat * keep | |
heat = heat.reshape(-1, ) | |
scores, indices = torch.topk(heat, topk_n, dim=-1, largest=True) | |
yy = torch.floor_divide(indices, w).unsqueeze(-1) | |
xx = torch.fmod(indices, w).unsqueeze(-1) | |
ptss = torch.cat((yy, xx),dim=-1) | |
ptss = ptss.detach().cpu().numpy() | |
scores = scores.detach().cpu().numpy() | |
displacement = displacement.detach().cpu().numpy() | |
displacement = displacement.transpose((1,2,0)) | |
return ptss, scores, displacement | |
def pred_lines(image, model, | |
input_shape=[512, 512], | |
score_thr=0.10, | |
dist_thr=20.0): | |
h, w, _ = image.shape | |
h_ratio, w_ratio = [h / input_shape[0], w / input_shape[1]] | |
resized_image = np.concatenate([cv2.resize(image, (input_shape[1], input_shape[0]), interpolation=cv2.INTER_AREA), | |
np.ones([input_shape[0], input_shape[1], 1])], axis=-1) | |
resized_image = resized_image.transpose((2,0,1)) | |
batch_image = np.expand_dims(resized_image, axis=0).astype('float32') | |
batch_image = (batch_image / 127.5) - 1.0 | |
batch_image = torch.from_numpy(batch_image).float().cuda() | |
outputs = model(batch_image) | |
pts, pts_score, vmap = deccode_output_score_and_ptss(outputs, 200, 3) | |
start = vmap[:, :, :2] | |
end = vmap[:, :, 2:] | |
dist_map = np.sqrt(np.sum((start - end) ** 2, axis=-1)) | |
segments_list = [] | |
for center, score in zip(pts, pts_score): | |
y, x = center | |
distance = dist_map[y, x] | |
if score > score_thr and distance > dist_thr: | |
disp_x_start, disp_y_start, disp_x_end, disp_y_end = vmap[y, x, :] | |
x_start = x + disp_x_start | |
y_start = y + disp_y_start | |
x_end = x + disp_x_end | |
y_end = y + disp_y_end | |
segments_list.append([x_start, y_start, x_end, y_end]) | |
lines = 2 * np.array(segments_list) # 256 > 512 | |
lines[:, 0] = lines[:, 0] * w_ratio | |
lines[:, 1] = lines[:, 1] * h_ratio | |
lines[:, 2] = lines[:, 2] * w_ratio | |
lines[:, 3] = lines[:, 3] * h_ratio | |
return lines | |
def pred_squares(image, | |
model, | |
input_shape=[512, 512], | |
params={'score': 0.06, | |
'outside_ratio': 0.28, | |
'inside_ratio': 0.45, | |
'w_overlap': 0.0, | |
'w_degree': 1.95, | |
'w_length': 0.0, | |
'w_area': 1.86, | |
'w_center': 0.14}): | |
''' | |
shape = [height, width] | |
''' | |
h, w, _ = image.shape | |
original_shape = [h, w] | |
resized_image = np.concatenate([cv2.resize(image, (input_shape[0], input_shape[1]), interpolation=cv2.INTER_AREA), | |
np.ones([input_shape[0], input_shape[1], 1])], axis=-1) | |
resized_image = resized_image.transpose((2, 0, 1)) | |
batch_image = np.expand_dims(resized_image, axis=0).astype('float32') | |
batch_image = (batch_image / 127.5) - 1.0 | |
batch_image = torch.from_numpy(batch_image).float().cuda() | |
outputs = model(batch_image) | |
pts, pts_score, vmap = deccode_output_score_and_ptss(outputs, 200, 3) | |
start = vmap[:, :, :2] # (x, y) | |
end = vmap[:, :, 2:] # (x, y) | |
dist_map = np.sqrt(np.sum((start - end) ** 2, axis=-1)) | |
junc_list = [] | |
segments_list = [] | |
for junc, score in zip(pts, pts_score): | |
y, x = junc | |
distance = dist_map[y, x] | |
if score > params['score'] and distance > 20.0: | |
junc_list.append([x, y]) | |
disp_x_start, disp_y_start, disp_x_end, disp_y_end = vmap[y, x, :] | |
d_arrow = 1.0 | |
x_start = x + d_arrow * disp_x_start | |
y_start = y + d_arrow * disp_y_start | |
x_end = x + d_arrow * disp_x_end | |
y_end = y + d_arrow * disp_y_end | |
segments_list.append([x_start, y_start, x_end, y_end]) | |
segments = np.array(segments_list) | |
####### post processing for squares | |
# 1. get unique lines | |
point = np.array([[0, 0]]) | |
point = point[0] | |
start = segments[:, :2] | |
end = segments[:, 2:] | |
diff = start - end | |
a = diff[:, 1] | |
b = -diff[:, 0] | |
c = a * start[:, 0] + b * start[:, 1] | |
d = np.abs(a * point[0] + b * point[1] - c) / np.sqrt(a ** 2 + b ** 2 + 1e-10) | |
theta = np.arctan2(diff[:, 0], diff[:, 1]) * 180 / np.pi | |
theta[theta < 0.0] += 180 | |
hough = np.concatenate([d[:, None], theta[:, None]], axis=-1) | |
d_quant = 1 | |
theta_quant = 2 | |
hough[:, 0] //= d_quant | |
hough[:, 1] //= theta_quant | |
_, indices, counts = np.unique(hough, axis=0, return_index=True, return_counts=True) | |
acc_map = np.zeros([512 // d_quant + 1, 360 // theta_quant + 1], dtype='float32') | |
idx_map = np.zeros([512 // d_quant + 1, 360 // theta_quant + 1], dtype='int32') - 1 | |
yx_indices = hough[indices, :].astype('int32') | |
acc_map[yx_indices[:, 0], yx_indices[:, 1]] = counts | |
idx_map[yx_indices[:, 0], yx_indices[:, 1]] = indices | |
acc_map_np = acc_map | |
# acc_map = acc_map[None, :, :, None] | |
# | |
# ### fast suppression using tensorflow op | |
# acc_map = tf.constant(acc_map, dtype=tf.float32) | |
# max_acc_map = tf.keras.layers.MaxPool2D(pool_size=(5, 5), strides=1, padding='same')(acc_map) | |
# acc_map = acc_map * tf.cast(tf.math.equal(acc_map, max_acc_map), tf.float32) | |
# flatten_acc_map = tf.reshape(acc_map, [1, -1]) | |
# topk_values, topk_indices = tf.math.top_k(flatten_acc_map, k=len(pts)) | |
# _, h, w, _ = acc_map.shape | |
# y = tf.expand_dims(topk_indices // w, axis=-1) | |
# x = tf.expand_dims(topk_indices % w, axis=-1) | |
# yx = tf.concat([y, x], axis=-1) | |
### fast suppression using pytorch op | |
acc_map = torch.from_numpy(acc_map_np).unsqueeze(0).unsqueeze(0) | |
_,_, h, w = acc_map.shape | |
max_acc_map = F.max_pool2d(acc_map,kernel_size=5, stride=1, padding=2) | |
acc_map = acc_map * ( (acc_map == max_acc_map).float() ) | |
flatten_acc_map = acc_map.reshape([-1, ]) | |
scores, indices = torch.topk(flatten_acc_map, len(pts), dim=-1, largest=True) | |
yy = torch.div(indices, w, rounding_mode='floor').unsqueeze(-1) | |
xx = torch.fmod(indices, w).unsqueeze(-1) | |
yx = torch.cat((yy, xx), dim=-1) | |
yx = yx.detach().cpu().numpy() | |
topk_values = scores.detach().cpu().numpy() | |
indices = idx_map[yx[:, 0], yx[:, 1]] | |
basis = 5 // 2 | |
merged_segments = [] | |
for yx_pt, max_indice, value in zip(yx, indices, topk_values): | |
y, x = yx_pt | |
if max_indice == -1 or value == 0: | |
continue | |
segment_list = [] | |
for y_offset in range(-basis, basis + 1): | |
for x_offset in range(-basis, basis + 1): | |
indice = idx_map[y + y_offset, x + x_offset] | |
cnt = int(acc_map_np[y + y_offset, x + x_offset]) | |
if indice != -1: | |
segment_list.append(segments[indice]) | |
if cnt > 1: | |
check_cnt = 1 | |
current_hough = hough[indice] | |
for new_indice, new_hough in enumerate(hough): | |
if (current_hough == new_hough).all() and indice != new_indice: | |
segment_list.append(segments[new_indice]) | |
check_cnt += 1 | |
if check_cnt == cnt: | |
break | |
group_segments = np.array(segment_list).reshape([-1, 2]) | |
sorted_group_segments = np.sort(group_segments, axis=0) | |
x_min, y_min = sorted_group_segments[0, :] | |
x_max, y_max = sorted_group_segments[-1, :] | |
deg = theta[max_indice] | |
if deg >= 90: | |
merged_segments.append([x_min, y_max, x_max, y_min]) | |
else: | |
merged_segments.append([x_min, y_min, x_max, y_max]) | |
# 2. get intersections | |
new_segments = np.array(merged_segments) # (x1, y1, x2, y2) | |
start = new_segments[:, :2] # (x1, y1) | |
end = new_segments[:, 2:] # (x2, y2) | |
new_centers = (start + end) / 2.0 | |
diff = start - end | |
dist_segments = np.sqrt(np.sum(diff ** 2, axis=-1)) | |
# ax + by = c | |
a = diff[:, 1] | |
b = -diff[:, 0] | |
c = a * start[:, 0] + b * start[:, 1] | |
pre_det = a[:, None] * b[None, :] | |
det = pre_det - np.transpose(pre_det) | |
pre_inter_y = a[:, None] * c[None, :] | |
inter_y = (pre_inter_y - np.transpose(pre_inter_y)) / (det + 1e-10) | |
pre_inter_x = c[:, None] * b[None, :] | |
inter_x = (pre_inter_x - np.transpose(pre_inter_x)) / (det + 1e-10) | |
inter_pts = np.concatenate([inter_x[:, :, None], inter_y[:, :, None]], axis=-1).astype('int32') | |
# 3. get corner information | |
# 3.1 get distance | |
''' | |
dist_segments: | |
| dist(0), dist(1), dist(2), ...| | |
dist_inter_to_segment1: | |
| dist(inter,0), dist(inter,0), dist(inter,0), ... | | |
| dist(inter,1), dist(inter,1), dist(inter,1), ... | | |
... | |
dist_inter_to_semgnet2: | |
| dist(inter,0), dist(inter,1), dist(inter,2), ... | | |
| dist(inter,0), dist(inter,1), dist(inter,2), ... | | |
... | |
''' | |
dist_inter_to_segment1_start = np.sqrt( | |
np.sum(((inter_pts - start[:, None, :]) ** 2), axis=-1, keepdims=True)) # [n_batch, n_batch, 1] | |
dist_inter_to_segment1_end = np.sqrt( | |
np.sum(((inter_pts - end[:, None, :]) ** 2), axis=-1, keepdims=True)) # [n_batch, n_batch, 1] | |
dist_inter_to_segment2_start = np.sqrt( | |
np.sum(((inter_pts - start[None, :, :]) ** 2), axis=-1, keepdims=True)) # [n_batch, n_batch, 1] | |
dist_inter_to_segment2_end = np.sqrt( | |
np.sum(((inter_pts - end[None, :, :]) ** 2), axis=-1, keepdims=True)) # [n_batch, n_batch, 1] | |
# sort ascending | |
dist_inter_to_segment1 = np.sort( | |
np.concatenate([dist_inter_to_segment1_start, dist_inter_to_segment1_end], axis=-1), | |
axis=-1) # [n_batch, n_batch, 2] | |
dist_inter_to_segment2 = np.sort( | |
np.concatenate([dist_inter_to_segment2_start, dist_inter_to_segment2_end], axis=-1), | |
axis=-1) # [n_batch, n_batch, 2] | |
# 3.2 get degree | |
inter_to_start = new_centers[:, None, :] - inter_pts | |
deg_inter_to_start = np.arctan2(inter_to_start[:, :, 1], inter_to_start[:, :, 0]) * 180 / np.pi | |
deg_inter_to_start[deg_inter_to_start < 0.0] += 360 | |
inter_to_end = new_centers[None, :, :] - inter_pts | |
deg_inter_to_end = np.arctan2(inter_to_end[:, :, 1], inter_to_end[:, :, 0]) * 180 / np.pi | |
deg_inter_to_end[deg_inter_to_end < 0.0] += 360 | |
''' | |
B -- G | |
| | | |
C -- R | |
B : blue / G: green / C: cyan / R: red | |
0 -- 1 | |
| | | |
3 -- 2 | |
''' | |
# rename variables | |
deg1_map, deg2_map = deg_inter_to_start, deg_inter_to_end | |
# sort deg ascending | |
deg_sort = np.sort(np.concatenate([deg1_map[:, :, None], deg2_map[:, :, None]], axis=-1), axis=-1) | |
deg_diff_map = np.abs(deg1_map - deg2_map) | |
# we only consider the smallest degree of intersect | |
deg_diff_map[deg_diff_map > 180] = 360 - deg_diff_map[deg_diff_map > 180] | |
# define available degree range | |
deg_range = [60, 120] | |
corner_dict = {corner_info: [] for corner_info in range(4)} | |
inter_points = [] | |
for i in range(inter_pts.shape[0]): | |
for j in range(i + 1, inter_pts.shape[1]): | |
# i, j > line index, always i < j | |
x, y = inter_pts[i, j, :] | |
deg1, deg2 = deg_sort[i, j, :] | |
deg_diff = deg_diff_map[i, j] | |
check_degree = deg_diff > deg_range[0] and deg_diff < deg_range[1] | |
outside_ratio = params['outside_ratio'] # over ratio >>> drop it! | |
inside_ratio = params['inside_ratio'] # over ratio >>> drop it! | |
check_distance = ((dist_inter_to_segment1[i, j, 1] >= dist_segments[i] and \ | |
dist_inter_to_segment1[i, j, 0] <= dist_segments[i] * outside_ratio) or \ | |
(dist_inter_to_segment1[i, j, 1] <= dist_segments[i] and \ | |
dist_inter_to_segment1[i, j, 0] <= dist_segments[i] * inside_ratio)) and \ | |
((dist_inter_to_segment2[i, j, 1] >= dist_segments[j] and \ | |
dist_inter_to_segment2[i, j, 0] <= dist_segments[j] * outside_ratio) or \ | |
(dist_inter_to_segment2[i, j, 1] <= dist_segments[j] and \ | |
dist_inter_to_segment2[i, j, 0] <= dist_segments[j] * inside_ratio)) | |
if check_degree and check_distance: | |
corner_info = None | |
if (deg1 >= 0 and deg1 <= 45 and deg2 >= 45 and deg2 <= 120) or \ | |
(deg2 >= 315 and deg1 >= 45 and deg1 <= 120): | |
corner_info, color_info = 0, 'blue' | |
elif (deg1 >= 45 and deg1 <= 125 and deg2 >= 125 and deg2 <= 225): | |
corner_info, color_info = 1, 'green' | |
elif (deg1 >= 125 and deg1 <= 225 and deg2 >= 225 and deg2 <= 315): | |
corner_info, color_info = 2, 'black' | |
elif (deg1 >= 0 and deg1 <= 45 and deg2 >= 225 and deg2 <= 315) or \ | |
(deg2 >= 315 and deg1 >= 225 and deg1 <= 315): | |
corner_info, color_info = 3, 'cyan' | |
else: | |
corner_info, color_info = 4, 'red' # we don't use it | |
continue | |
corner_dict[corner_info].append([x, y, i, j]) | |
inter_points.append([x, y]) | |
square_list = [] | |
connect_list = [] | |
segments_list = [] | |
for corner0 in corner_dict[0]: | |
for corner1 in corner_dict[1]: | |
connect01 = False | |
for corner0_line in corner0[2:]: | |
if corner0_line in corner1[2:]: | |
connect01 = True | |
break | |
if connect01: | |
for corner2 in corner_dict[2]: | |
connect12 = False | |
for corner1_line in corner1[2:]: | |
if corner1_line in corner2[2:]: | |
connect12 = True | |
break | |
if connect12: | |
for corner3 in corner_dict[3]: | |
connect23 = False | |
for corner2_line in corner2[2:]: | |
if corner2_line in corner3[2:]: | |
connect23 = True | |
break | |
if connect23: | |
for corner3_line in corner3[2:]: | |
if corner3_line in corner0[2:]: | |
# SQUARE!!! | |
''' | |
0 -- 1 | |
| | | |
3 -- 2 | |
square_list: | |
order: 0 > 1 > 2 > 3 | |
| x0, y0, x1, y1, x2, y2, x3, y3 | | |
| x0, y0, x1, y1, x2, y2, x3, y3 | | |
... | |
connect_list: | |
order: 01 > 12 > 23 > 30 | |
| line_idx01, line_idx12, line_idx23, line_idx30 | | |
| line_idx01, line_idx12, line_idx23, line_idx30 | | |
... | |
segments_list: | |
order: 0 > 1 > 2 > 3 | |
| line_idx0_i, line_idx0_j, line_idx1_i, line_idx1_j, line_idx2_i, line_idx2_j, line_idx3_i, line_idx3_j | | |
| line_idx0_i, line_idx0_j, line_idx1_i, line_idx1_j, line_idx2_i, line_idx2_j, line_idx3_i, line_idx3_j | | |
... | |
''' | |
square_list.append(corner0[:2] + corner1[:2] + corner2[:2] + corner3[:2]) | |
connect_list.append([corner0_line, corner1_line, corner2_line, corner3_line]) | |
segments_list.append(corner0[2:] + corner1[2:] + corner2[2:] + corner3[2:]) | |
def check_outside_inside(segments_info, connect_idx): | |
# return 'outside or inside', min distance, cover_param, peri_param | |
if connect_idx == segments_info[0]: | |
check_dist_mat = dist_inter_to_segment1 | |
else: | |
check_dist_mat = dist_inter_to_segment2 | |
i, j = segments_info | |
min_dist, max_dist = check_dist_mat[i, j, :] | |
connect_dist = dist_segments[connect_idx] | |
if max_dist > connect_dist: | |
return 'outside', min_dist, 0, 1 | |
else: | |
return 'inside', min_dist, -1, -1 | |
top_square = None | |
try: | |
map_size = input_shape[0] / 2 | |
squares = np.array(square_list).reshape([-1, 4, 2]) | |
score_array = [] | |
connect_array = np.array(connect_list) | |
segments_array = np.array(segments_list).reshape([-1, 4, 2]) | |
# get degree of corners: | |
squares_rollup = np.roll(squares, 1, axis=1) | |
squares_rolldown = np.roll(squares, -1, axis=1) | |
vec1 = squares_rollup - squares | |
normalized_vec1 = vec1 / (np.linalg.norm(vec1, axis=-1, keepdims=True) + 1e-10) | |
vec2 = squares_rolldown - squares | |
normalized_vec2 = vec2 / (np.linalg.norm(vec2, axis=-1, keepdims=True) + 1e-10) | |
inner_products = np.sum(normalized_vec1 * normalized_vec2, axis=-1) # [n_squares, 4] | |
squares_degree = np.arccos(inner_products) * 180 / np.pi # [n_squares, 4] | |
# get square score | |
overlap_scores = [] | |
degree_scores = [] | |
length_scores = [] | |
for connects, segments, square, degree in zip(connect_array, segments_array, squares, squares_degree): | |
''' | |
0 -- 1 | |
| | | |
3 -- 2 | |
# segments: [4, 2] | |
# connects: [4] | |
''' | |
###################################### OVERLAP SCORES | |
cover = 0 | |
perimeter = 0 | |
# check 0 > 1 > 2 > 3 | |
square_length = [] | |
for start_idx in range(4): | |
end_idx = (start_idx + 1) % 4 | |
connect_idx = connects[start_idx] # segment idx of segment01 | |
start_segments = segments[start_idx] | |
end_segments = segments[end_idx] | |
start_point = square[start_idx] | |
end_point = square[end_idx] | |
# check whether outside or inside | |
start_position, start_min, start_cover_param, start_peri_param = check_outside_inside(start_segments, | |
connect_idx) | |
end_position, end_min, end_cover_param, end_peri_param = check_outside_inside(end_segments, connect_idx) | |
cover += dist_segments[connect_idx] + start_cover_param * start_min + end_cover_param * end_min | |
perimeter += dist_segments[connect_idx] + start_peri_param * start_min + end_peri_param * end_min | |
square_length.append( | |
dist_segments[connect_idx] + start_peri_param * start_min + end_peri_param * end_min) | |
overlap_scores.append(cover / perimeter) | |
###################################### | |
###################################### DEGREE SCORES | |
''' | |
deg0 vs deg2 | |
deg1 vs deg3 | |
''' | |
deg0, deg1, deg2, deg3 = degree | |
deg_ratio1 = deg0 / deg2 | |
if deg_ratio1 > 1.0: | |
deg_ratio1 = 1 / deg_ratio1 | |
deg_ratio2 = deg1 / deg3 | |
if deg_ratio2 > 1.0: | |
deg_ratio2 = 1 / deg_ratio2 | |
degree_scores.append((deg_ratio1 + deg_ratio2) / 2) | |
###################################### | |
###################################### LENGTH SCORES | |
''' | |
len0 vs len2 | |
len1 vs len3 | |
''' | |
len0, len1, len2, len3 = square_length | |
len_ratio1 = len0 / len2 if len2 > len0 else len2 / len0 | |
len_ratio2 = len1 / len3 if len3 > len1 else len3 / len1 | |
length_scores.append((len_ratio1 + len_ratio2) / 2) | |
###################################### | |
overlap_scores = np.array(overlap_scores) | |
overlap_scores /= np.max(overlap_scores) | |
degree_scores = np.array(degree_scores) | |
# degree_scores /= np.max(degree_scores) | |
length_scores = np.array(length_scores) | |
###################################### AREA SCORES | |
area_scores = np.reshape(squares, [-1, 4, 2]) | |
area_x = area_scores[:, :, 0] | |
area_y = area_scores[:, :, 1] | |
correction = area_x[:, -1] * area_y[:, 0] - area_y[:, -1] * area_x[:, 0] | |
area_scores = np.sum(area_x[:, :-1] * area_y[:, 1:], axis=-1) - np.sum(area_y[:, :-1] * area_x[:, 1:], axis=-1) | |
area_scores = 0.5 * np.abs(area_scores + correction) | |
area_scores /= (map_size * map_size) # np.max(area_scores) | |
###################################### | |
###################################### CENTER SCORES | |
centers = np.array([[256 // 2, 256 // 2]], dtype='float32') # [1, 2] | |
# squares: [n, 4, 2] | |
square_centers = np.mean(squares, axis=1) # [n, 2] | |
center2center = np.sqrt(np.sum((centers - square_centers) ** 2)) | |
center_scores = center2center / (map_size / np.sqrt(2.0)) | |
''' | |
score_w = [overlap, degree, area, center, length] | |
''' | |
score_w = [0.0, 1.0, 10.0, 0.5, 1.0] | |
score_array = params['w_overlap'] * overlap_scores \ | |
+ params['w_degree'] * degree_scores \ | |
+ params['w_area'] * area_scores \ | |
- params['w_center'] * center_scores \ | |
+ params['w_length'] * length_scores | |
best_square = [] | |
sorted_idx = np.argsort(score_array)[::-1] | |
score_array = score_array[sorted_idx] | |
squares = squares[sorted_idx] | |
except Exception as e: | |
pass | |
'''return list | |
merged_lines, squares, scores | |
''' | |
try: | |
new_segments[:, 0] = new_segments[:, 0] * 2 / input_shape[1] * original_shape[1] | |
new_segments[:, 1] = new_segments[:, 1] * 2 / input_shape[0] * original_shape[0] | |
new_segments[:, 2] = new_segments[:, 2] * 2 / input_shape[1] * original_shape[1] | |
new_segments[:, 3] = new_segments[:, 3] * 2 / input_shape[0] * original_shape[0] | |
except: | |
new_segments = [] | |
try: | |
squares[:, :, 0] = squares[:, :, 0] * 2 / input_shape[1] * original_shape[1] | |
squares[:, :, 1] = squares[:, :, 1] * 2 / input_shape[0] * original_shape[0] | |
except: | |
squares = [] | |
score_array = [] | |
try: | |
inter_points = np.array(inter_points) | |
inter_points[:, 0] = inter_points[:, 0] * 2 / input_shape[1] * original_shape[1] | |
inter_points[:, 1] = inter_points[:, 1] * 2 / input_shape[0] * original_shape[0] | |
except: | |
inter_points = [] | |
return new_segments, squares, score_array, inter_points | |