import streamlit as st from sklearn.linear_model import LogisticRegression import torch from transformers import pipeline def run(): st.title("7. Machine Learning, Deep Learning & Transformers") st.write("## Overview") st.write("Learn about different machine learning models, deep learning models, and transformers.") st.write("## Key Concepts & Explanations") st.markdown(""" - **Machine Learning Models**: Supervised, unsupervised, and reinforcement learning. - **Deep Learning**: Neural networks with many layers, used for complex tasks like image recognition. - **Transformers**: A powerful model architecture used in natural language processing (NLP) tasks. """) # ML Example: Logistic Regression st.write("### Example: Logistic Regression") st.write("We'll use logistic regression to classify some sample data.") model = LogisticRegression() # (Insert a sample dataset and training procedure here) # Deep Learning Example: Using Pretrained Transformers st.write("### Example: Transformer Model for Sentiment Analysis") # Initialize the NLP pipeline for sentiment analysis nlp_pipeline = pipeline("sentiment-analysis") def analyze_sentiment(user_sentence): response = nlp_pipeline(user_sentence) return response[0] # Example usage user_sentence = st.text_input("Enter a sentence for sentiment analysis:") if user_sentence: response = analyze_sentiment(user_sentence) st.write(f"Sentiment: {response['label']}, Score: {response['score']}") # Deep Learning Example: Using Pretrained Transformers #st.write("### Example: Transformer Model") #nlp = pipeline("sentiment-analysis") #st.write(nlp("I love machine learning!")) st.write("## Quiz: Conceptual Questions") q1 = st.radio("What is a transformer model used for?", ["Text classification", "Image processing", "Time series analysis"]) if q1 == "Text classification": st.success("✅ Correct!") else: st.error("❌ Incorrect.") st.write("## Code-Based Quiz") code_input = st.text_area("Write code to create a simple neural network using PyTorch", value="import torch\nimport torch.nn as nn\nclass SimpleNN(nn.Module):\n def __init__(self):\n super(SimpleNN, self).__init__()") if "super(SimpleNN" in code_input: st.success("✅ Correct!") else: st.error("❌ Try again.") st.write("## Learning Resources") st.markdown(""" - 📚 [Deep Learning with PyTorch](https://pytorch.org/tutorials/) - 🌐 [Transformers Library Documentation](https://huggingface.co/docs/transformers/) """)