File size: 1,630 Bytes
de2b822 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
import streamlit as st
def run():
st.title("6. Deployment & Testing")
st.header("Introduction")
st.write("""
Model Deployment is the process of integrating a machine learning model into a production environment where it can make predictions on new data.
""")
st.header("Objectives")
st.write("""
- Integrate the model into production.
- Monitor model performance.
- Update the model as needed.
""")
st.write("## Overview")
st.write("Deploying the model and testing its real-world performance.")
st.write("## Key Concepts & Explanations")
st.markdown("""
- **Deployment**: Making the model available for use (e.g., via an API).
- **Testing**: Ensuring the model works in production environments.
- **Model Monitoring**: Continuously tracking model performance in real-time.
""")
st.write("## Quiz: Conceptual Questions")
q1 = st.radio("Which of the following is part of deployment?", ["Model Training", "Model Versioning", "Model Testing"])
if q1 == "Model Versioning":
st.success("β
Correct!")
else:
st.error("β Incorrect.")
st.write("## Code-Based Quiz")
code_input = st.text_area("Write code to save a model using joblib", value="import joblib\njoblib.dump(model, 'model.pkl')")
if "joblib.dump" in code_input:
st.success("β
Correct!")
else:
st.error("β Try again.")
st.write("## Learning Resources")
st.markdown("""
- π [Machine Learning Model Deployment](https://towardsdatascience.com/deploying-machine-learning-models-using-flask-285dbddedbfa)
""")
|