Spaces:
Build error
3D Body Mesh Recovery Datasets
It is recommended to symlink the dataset root to $MMPOSE/data.
If your folder structure is different, you may need to change the corresponding paths in config files.
To achieve high-quality human mesh estimation, we use multiple datasets for training. The following items should be prepared for human mesh training:
Notes
Annotation Files for Human Mesh Estimation
For human mesh estimation, we use multiple datasets for training. The annotation of different datasets are preprocessed to the same format. Please follow the preprocess procedure of SPIN to generate the annotation files or download the processed files from here, and make it look like this:
mmpose
βββ mmpose
βββ docs
βββ tests
βββ tools
βββ configs
`ββ data
βββ mesh_annotation_files
βββ coco_2014_train.npz
βββ h36m_valid_protocol1.npz
βββ h36m_valid_protocol2.npz
βββ hr-lspet_train.npz
βββ lsp_dataset_original_train.npz
βββ mpi_inf_3dhp_train.npz
βββ mpii_train.npz
SMPL Model
@article{loper2015smpl,
title={SMPL: A skinned multi-person linear model},
author={Loper, Matthew and Mahmood, Naureen and Romero, Javier and Pons-Moll, Gerard and Black, Michael J},
journal={ACM transactions on graphics (TOG)},
volume={34},
number={6},
pages={1--16},
year={2015},
publisher={ACM New York, NY, USA}
}
For human mesh estimation, SMPL model is used to generate the human mesh.
Please download the gender neutral SMPL model,
joints regressor
and mean parameters
under $MMPOSE/models/smpl, and make it look like this:
mmpose
βββ mmpose
βββ ...
βββ models
βββ smpl
βββ joints_regressor_cmr.npy
βββ smpl_mean_params.npz
βββ SMPL_NEUTRAL.pkl
COCO
COCO (ECCV'2014)
@inproceedings{lin2014microsoft,
title={Microsoft coco: Common objects in context},
author={Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence},
booktitle={European conference on computer vision},
pages={740--755},
year={2014},
organization={Springer}
}
For COCO data, please download from COCO download. COCO'2014 Train is needed for human mesh estimation training. Download and extract them under $MMPOSE/data, and make them look like this:
mmpose
βββ mmpose
βββ docs
βββ tests
βββ tools
βββ configs
`ββ data
βββ coco
β-- train2014
β βββ COCO_train2014_000000000009.jpg
β βββ COCO_train2014_000000000025.jpg
β βββ COCO_train2014_000000000030.jpg
| β-- ...
Human3.6M
Human3.6M (TPAMI'2014)
@article{h36m_pami,
author = {Ionescu, Catalin and Papava, Dragos and Olaru, Vlad and Sminchisescu, Cristian},
title = {Human3.6M: Large Scale Datasets and Predictive Methods for 3D Human Sensing in Natural Environments},
journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence},
publisher = {IEEE Computer Society},
volume = {36},
number = {7},
pages = {1325-1339},
month = {jul},
year = {2014}
}
For Human3.6M, we use the MoShed data provided in HMR for training. However, due to license limitations, we are not allowed to redistribute the MoShed data.
For the evaluation on Human3.6M dataset, please follow the preprocess procedure of SPIN to extract test images from Human3.6M original videos, and make it look like this:
mmpose
βββ mmpose
βββ docs
βββ tests
βββ tools
βββ configs
`ββ data
βββ Human3.6M
βββ images
βββ S11_Directions_1.54138969_000001.jpg
βββ S11_Directions_1.54138969_000006.jpg
βββ S11_Directions_1.54138969_000011.jpg
βββ ...
The download of Human3.6M dataset is quite difficult, you can also download the zip file of the test images. However, due to the license limitations, we are not allowed to redistribute the images either. So the users need to download the original video and extract the images by themselves.
MPI-INF-3DHP
@inproceedings{mono-3dhp2017,
author = {Mehta, Dushyant and Rhodin, Helge and Casas, Dan and Fua, Pascal and Sotnychenko, Oleksandr and Xu, Weipeng and Theobalt, Christian},
title = {Monocular 3D Human Pose Estimation In The Wild Using Improved CNN Supervision},
booktitle = {3D Vision (3DV), 2017 Fifth International Conference on},
url = {http://gvv.mpi-inf.mpg.de/3dhp_dataset},
year = {2017},
organization={IEEE},
doi={10.1109/3dv.2017.00064},
}
For MPI-INF-3DHP, please follow the preprocess procedure of SPIN to sample images, and make them like this:
mmpose
βββ mmpose
βββ docs
βββ tests
βββ tools
βββ configs
`ββ data
βββ mpi_inf_3dhp_test_set
β βββ TS1
β βββ TS2
β βββ TS3
β βββ TS4
β βββ TS5
β βββ TS6
βββ S1
β βββ Seq1
β βββ Seq2
βββ S2
β βββ Seq1
β βββ Seq2
βββ S3
β βββ Seq1
β βββ Seq2
βββ S4
β βββ Seq1
β βββ Seq2
βββ S5
β βββ Seq1
β βββ Seq2
βββ S6
β βββ Seq1
β βββ Seq2
βββ S7
β βββ Seq1
β βββ Seq2
βββ S8
βββ Seq1
βββ Seq2
LSP
@inproceedings{johnson2010clustered,
title={Clustered Pose and Nonlinear Appearance Models for Human Pose Estimation.},
author={Johnson, Sam and Everingham, Mark},
booktitle={bmvc},
volume={2},
number={4},
pages={5},
year={2010},
organization={Citeseer}
}
For LSP, please download the high resolution version
LSP dataset original.
Extract them under $MMPOSE/data, and make them look like this:
mmpose
βββ mmpose
βββ docs
βββ tests
βββ tools
βββ configs
`ββ data
βββ lsp_dataset_original
βββ images
βββ im0001.jpg
βββ im0002.jpg
βββ ...
LSPET
@inproceedings{johnson2011learning,
title={Learning effective human pose estimation from inaccurate annotation},
author={Johnson, Sam and Everingham, Mark},
booktitle={CVPR 2011},
pages={1465--1472},
year={2011},
organization={IEEE}
}
For LSPET, please download its high resolution form
HR-LSPET.
Extract them under $MMPOSE/data, and make them look like this:
mmpose
βββ mmpose
βββ docs
βββ tests
βββ tools
βββ configs
`ββ data
βββ lspet_dataset
βββ images
β βββ im00001.jpg
β βββ im00002.jpg
β βββ im00003.jpg
β βββ ...
βββ joints.mat
CMU MoShed Data
@inproceedings{kanazawa2018end,
title={End-to-end recovery of human shape and pose},
author={Kanazawa, Angjoo and Black, Michael J and Jacobs, David W and Malik, Jitendra},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
pages={7122--7131},
year={2018}
}
Real-world SMPL parameters are used for the adversarial training in human mesh estimation.
The MoShed data provided in HMR is included in this
zip file.
Please download and extract it under $MMPOSE/data, and make it look like this:
mmpose
βββ mmpose
βββ docs
βββ tests
βββ tools
βββ configs
`ββ data
βββ mesh_annotation_files
βββ CMU_mosh.npz
βββ ...