Spaces:
Build error
Build error
File size: 15,559 Bytes
d7a991a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 |
# -----------------------------------------------------------------------------
# Adapted from https://github.com/anibali/h36m-fetch
# Original license: Copyright (c) Aiden Nibali, under the Apache License.
# -----------------------------------------------------------------------------
import argparse
import os
import pickle
import tarfile
import xml.etree.ElementTree as ET
from os.path import join
import cv2
import numpy as np
from spacepy import pycdf
class PreprocessH36m:
"""Preprocess Human3.6M dataset.
Args:
metadata (str): Path to metadata.xml.
original_dir (str): Directory of the original dataset with all files
compressed. Specifically, .tgz files belonging to subject 1
should be placed under the subdirectory 's1'.
extracted_dir (str): Directory of the extracted files. If not given, it
will be placed under the same parent directory as original_dir.
processed_der (str): Directory of the processed files. If not given, it
will be placed under the same parent directory as original_dir.
sample_rate (int): Downsample FPS to `1 / sample_rate`. Default: 5.
"""
def __init__(self,
metadata,
original_dir,
extracted_dir=None,
processed_dir=None,
sample_rate=5):
self.metadata = metadata
self.original_dir = original_dir
self.sample_rate = sample_rate
if extracted_dir is None:
self.extracted_dir = join(
os.path.dirname(os.path.abspath(self.original_dir)),
'extracted')
else:
self.extracted_dir = extracted_dir
if processed_dir is None:
self.processed_dir = join(
os.path.dirname(os.path.abspath(self.original_dir)),
'processed')
else:
self.processed_dir = processed_dir
self.subjects = []
self.sequence_mappings = {}
self.action_names = {}
self.camera_ids = []
self._load_metadata()
self.subjects_annot = ['S1', 'S5', 'S6', 'S7', 'S8', 'S9', 'S11']
self.subjects_splits = {
'train': ['S1', 'S5', 'S6', 'S7', 'S8'],
'test': ['S9', 'S11']
}
self.extract_files = ['Videos', 'D2_Positions', 'D3_Positions_mono']
self.movable_joints = [
0, 1, 2, 3, 6, 7, 8, 12, 13, 14, 15, 17, 18, 19, 25, 26, 27
]
self.scale_factor = 1.2
self.image_sizes = {
'54138969': {
'width': 1000,
'height': 1002
},
'55011271': {
'width': 1000,
'height': 1000
},
'58860488': {
'width': 1000,
'height': 1000
},
'60457274': {
'width': 1000,
'height': 1002
}
}
def extract_tgz(self):
"""Extract files from self.extrct_files."""
os.makedirs(self.extracted_dir, exist_ok=True)
for subject in self.subjects_annot:
cur_dir = join(self.original_dir, subject.lower())
for file in self.extract_files:
filename = join(cur_dir, file + '.tgz')
print(f'Extracting {filename} ...')
with tarfile.open(filename) as tar:
tar.extractall(self.extracted_dir)
print('Extraction done.\n')
def generate_cameras_file(self):
"""Generate cameras.pkl which contains camera parameters for 11
subjects each with 4 cameras."""
cameras = {}
for subject in range(1, 12):
for camera in range(4):
key = (f'S{subject}', self.camera_ids[camera])
cameras[key] = self._get_camera_params(camera, subject)
out_file = join(self.processed_dir, 'annotation_body3d', 'cameras.pkl')
with open(out_file, 'wb') as fout:
pickle.dump(cameras, fout)
print(f'Camera parameters have been written to "{out_file}".\n')
def generate_annotations(self):
"""Generate annotations for training and testing data."""
output_dir = join(self.processed_dir, 'annotation_body3d',
f'fps{50 // self.sample_rate}')
os.makedirs(output_dir, exist_ok=True)
for data_split in ('train', 'test'):
imgnames_all = []
centers_all = []
scales_all = []
kps2d_all = []
kps3d_all = []
for subject in self.subjects_splits[data_split]:
for action, subaction in self.sequence_mappings[subject].keys(
):
if action == '1':
# exclude action "_ALL"
continue
for camera in self.camera_ids:
imgnames, centers, scales, kps2d, kps3d\
= self._load_annotations(
subject, action, subaction, camera)
imgnames_all.append(imgnames)
centers_all.append(centers)
scales_all.append(scales)
kps2d_all.append(kps2d)
kps3d_all.append(kps3d)
imgnames_all = np.concatenate(imgnames_all)
centers_all = np.concatenate(centers_all)
scales_all = np.concatenate(scales_all)
kps2d_all = np.concatenate(kps2d_all)
kps3d_all = np.concatenate(kps3d_all)
out_file = join(output_dir, f'h36m_{data_split}.npz')
np.savez(
out_file,
imgname=imgnames_all,
center=centers_all,
scale=scales_all,
part=kps2d_all,
S=kps3d_all)
print(
f'All annotations of {data_split}ing data have been written to'
f' "{out_file}". {len(imgnames_all)} samples in total.\n')
if data_split == 'train':
kps_3d_all = kps3d_all[..., :3] # remove visibility
mean_3d, std_3d = self._get_pose_stats(kps_3d_all)
kps_2d_all = kps2d_all[..., :2] # remove visibility
mean_2d, std_2d = self._get_pose_stats(kps_2d_all)
# centered around root
# the root keypoint is 0-index
kps_3d_rel = kps_3d_all[..., 1:, :] - kps_3d_all[..., :1, :]
mean_3d_rel, std_3d_rel = self._get_pose_stats(kps_3d_rel)
kps_2d_rel = kps_2d_all[..., 1:, :] - kps_2d_all[..., :1, :]
mean_2d_rel, std_2d_rel = self._get_pose_stats(kps_2d_rel)
stats = {
'joint3d_stats': {
'mean': mean_3d,
'std': std_3d
},
'joint2d_stats': {
'mean': mean_2d,
'std': std_2d
},
'joint3d_rel_stats': {
'mean': mean_3d_rel,
'std': std_3d_rel
},
'joint2d_rel_stats': {
'mean': mean_2d_rel,
'std': std_2d_rel
}
}
for name, stat_dict in stats.items():
out_file = join(output_dir, f'{name}.pkl')
with open(out_file, 'wb') as f:
pickle.dump(stat_dict, f)
print(f'Create statistic data file: {out_file}')
@staticmethod
def _get_pose_stats(kps):
"""Get statistic information `mean` and `std` of pose data.
Args:
kps (ndarray): keypoints in shape [..., K, C] where K and C is
the keypoint category number and dimension.
Returns:
mean (ndarray): [K, C]
"""
assert kps.ndim > 2
K, C = kps.shape[-2:]
kps = kps.reshape(-1, K, C)
mean = kps.mean(axis=0)
std = kps.std(axis=0)
return mean, std
def _load_metadata(self):
"""Load meta data from metadata.xml."""
assert os.path.exists(self.metadata)
tree = ET.parse(self.metadata)
root = tree.getroot()
for i, tr in enumerate(root.find('mapping')):
if i == 0:
_, _, *self.subjects = [td.text for td in tr]
self.sequence_mappings \
= {subject: {} for subject in self.subjects}
elif i < 33:
action_id, subaction_id, *prefixes = [td.text for td in tr]
for subject, prefix in zip(self.subjects, prefixes):
self.sequence_mappings[subject][(action_id, subaction_id)]\
= prefix
for i, elem in enumerate(root.find('actionnames')):
action_id = str(i + 1)
self.action_names[action_id] = elem.text
self.camera_ids \
= [elem.text for elem in root.find('dbcameras/index2id')]
w0 = root.find('w0')
self.cameras_raw = [float(num) for num in w0.text[1:-1].split()]
def _get_base_filename(self, subject, action, subaction, camera):
"""Get base filename given subject, action, subaction and camera."""
return f'{self.sequence_mappings[subject][(action, subaction)]}' + \
f'.{camera}'
def _get_camera_params(self, camera, subject):
"""Get camera parameters given camera id and subject id."""
metadata_slice = np.zeros(15)
start = 6 * (camera * 11 + (subject - 1))
metadata_slice[:6] = self.cameras_raw[start:start + 6]
metadata_slice[6:] = self.cameras_raw[265 + camera * 9 - 1:265 +
(camera + 1) * 9 - 1]
# extrinsics
x, y, z = -metadata_slice[0], metadata_slice[1], -metadata_slice[2]
R_x = np.array([[1, 0, 0], [0, np.cos(x), np.sin(x)],
[0, -np.sin(x), np.cos(x)]])
R_y = np.array([[np.cos(y), 0, np.sin(y)], [0, 1, 0],
[-np.sin(y), 0, np.cos(y)]])
R_z = np.array([[np.cos(z), np.sin(z), 0], [-np.sin(z),
np.cos(z), 0], [0, 0, 1]])
R = (R_x @ R_y @ R_z).T
T = metadata_slice[3:6].reshape(-1, 1)
# convert unit from millimeter to meter
T *= 0.001
# intrinsics
c = metadata_slice[8:10, None]
f = metadata_slice[6:8, None]
# distortion
k = metadata_slice[10:13, None]
p = metadata_slice[13:15, None]
return {
'R': R,
'T': T,
'c': c,
'f': f,
'k': k,
'p': p,
'w': self.image_sizes[self.camera_ids[camera]]['width'],
'h': self.image_sizes[self.camera_ids[camera]]['height'],
'name': f'camera{camera + 1}',
'id': self.camera_ids[camera]
}
def _load_annotations(self, subject, action, subaction, camera):
"""Load annotations for a sequence."""
subj_dir = join(self.extracted_dir, subject)
basename = self._get_base_filename(subject, action, subaction, camera)
# load 2D keypoints
with pycdf.CDF(
join(subj_dir, 'MyPoseFeatures', 'D2_Positions',
basename + '.cdf')) as cdf:
kps_2d = np.array(cdf['Pose'])
num_frames = kps_2d.shape[1]
kps_2d = kps_2d.reshape((num_frames, 32, 2))[::self.sample_rate,
self.movable_joints]
kps_2d = np.concatenate([kps_2d, np.ones((len(kps_2d), 17, 1))],
axis=2)
# load 3D keypoints
with pycdf.CDF(
join(subj_dir, 'MyPoseFeatures', 'D3_Positions_mono',
basename + '.cdf')) as cdf:
kps_3d = np.array(cdf['Pose'])
kps_3d = kps_3d.reshape(
(num_frames, 32, 3))[::self.sample_rate,
self.movable_joints] / 1000.
kps_3d = np.concatenate([kps_3d, np.ones((len(kps_3d), 17, 1))],
axis=2)
# calculate bounding boxes
bboxes = np.stack([
np.min(kps_2d[:, :, 0], axis=1),
np.min(kps_2d[:, :, 1], axis=1),
np.max(kps_2d[:, :, 0], axis=1),
np.max(kps_2d[:, :, 1], axis=1)
],
axis=1)
centers = np.stack([(bboxes[:, 0] + bboxes[:, 2]) / 2,
(bboxes[:, 1] + bboxes[:, 3]) / 2],
axis=1)
scales = self.scale_factor * np.max(
bboxes[:, 2:] - bboxes[:, :2], axis=1) / 200
# extract frames and save imgnames
imgnames = []
video_path = join(subj_dir, 'Videos', basename + '.mp4')
sub_base = subject + '_' + basename.replace(' ', '_')
img_dir = join(self.processed_dir, 'images', subject, sub_base)
os.makedirs(img_dir, exist_ok=True)
prefix = join(subject, sub_base, sub_base)
cap = cv2.VideoCapture(video_path)
i = 0
while True:
success, img = cap.read()
if not success:
break
if i % self.sample_rate == 0:
imgname = f'{prefix}_{i + 1:06d}.jpg'
imgnames.append(imgname)
dest_path = join(self.processed_dir, 'images', imgname)
if not os.path.exists(dest_path):
cv2.imwrite(dest_path, img)
if len(imgnames) == len(centers):
break
i += 1
cap.release()
imgnames = np.array(imgnames)
print(f'Annoatations for sequence "{subject} {basename}" are loaded. '
f'{len(imgnames)} samples in total.')
return imgnames, centers, scales, kps_2d, kps_3d
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
'--metadata', type=str, required=True, help='Path to metadata.xml')
parser.add_argument(
'--original',
type=str,
required=True,
help='Directory of the original dataset with all files compressed. '
'Specifically, .tgz files belonging to subject 1 should be placed '
'under the subdirectory \"s1\".')
parser.add_argument(
'--extracted',
type=str,
default=None,
help='Directory of the extracted files. If not given, it will be '
'placed under the same parent directory as original_dir.')
parser.add_argument(
'--processed',
type=str,
default=None,
help='Directory of the processed files. If not given, it will be '
'placed under the same parent directory as original_dir.')
parser.add_argument(
'--sample_rate',
type=int,
default=5,
help='Downsample FPS to `1 / sample_rate`. Default: 5.')
args = parser.parse_args()
return args
if __name__ == '__main__':
args = parse_args()
h36m = PreprocessH36m(
metadata=args.metadata,
original_dir=args.original,
extracted_dir=args.extracted,
processed_dir=args.processed,
sample_rate=args.sample_rate)
h36m.extract_tgz()
h36m.generate_cameras_file()
h36m.generate_annotations()
|