Spaces:
Build error
Build error
File size: 13,482 Bytes
d7a991a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 |
# Copyright (c) OpenMMLab. All rights reserved.
import json
import os
import re
import time
import warnings
import cv2
import numpy as np
import xmltodict
from xtcocotools.coco import COCO
np.random.seed(0)
def list_all_files(root_dir, ext='.xml'):
"""List all files in the root directory and all its sub directories.
:param root_dir: root directory
:param ext: filename extension
:return: list of files
"""
files = []
file_list = os.listdir(root_dir)
for i in range(0, len(file_list)):
path = os.path.join(root_dir, file_list[i])
if os.path.isdir(path):
files.extend(list_all_files(path))
if os.path.isfile(path):
if path.lower().endswith(ext):
files.append(path)
return files
def get_anno_info():
keypoints_info = [
'L_Eye',
'R_Eye',
'L_EarBase',
'R_EarBase',
'Nose',
'Throat',
'TailBase',
'Withers',
'L_F_Elbow',
'R_F_Elbow',
'L_B_Elbow',
'R_B_Elbow',
'L_F_Knee',
'R_F_Knee',
'L_B_Knee',
'R_B_Knee',
'L_F_Paw',
'R_F_Paw',
'L_B_Paw',
'R_B_Paw',
]
skeleton_info = [[1, 2], [1, 3], [2, 4], [1, 5], [2, 5], [5, 6], [6, 8],
[7, 8], [6, 9], [9, 13], [13, 17], [6, 10], [10, 14],
[14, 18], [7, 11], [11, 15], [15, 19], [7, 12], [12, 16],
[16, 20]]
category_info = [{
'supercategory': 'animal',
'id': 1,
'name': 'animal',
'keypoints': keypoints_info,
'skeleton': skeleton_info
}]
return keypoints_info, skeleton_info, category_info
def xml2coco_trainval(file_list, img_root, save_path, start_ann_id=0):
"""Save annotations in coco-format.
:param file_list: list of data annotation files.
:param img_root: the root dir to load images.
:param save_path: the path to save transformed annotation file.
:param start_ann_id: the starting point to count the annotation id.
:param val_num: the number of annotated objects for validation.
"""
images = []
annotations = []
img_ids = []
ann_ids = []
ann_id = start_ann_id
name2id = {
'L_Eye': 0,
'R_Eye': 1,
'L_EarBase': 2,
'R_EarBase': 3,
'Nose': 4,
'Throat': 5,
'TailBase': 6,
'Withers': 7,
'L_F_Elbow': 8,
'R_F_Elbow': 9,
'L_B_Elbow': 10,
'R_B_Elbow': 11,
'L_F_Knee': 12,
'R_F_Knee': 13,
'L_B_Knee': 14,
'R_B_Knee': 15,
'L_F_Paw': 16,
'R_F_Paw': 17,
'L_B_Paw': 18,
'R_B_Paw': 19
}
for file in file_list:
data_anno = xmltodict.parse(open(file).read())['annotation']
img_id = int(data_anno['image'].split('_')[0] +
data_anno['image'].split('_')[1])
if img_id not in img_ids:
image_name = 'VOC2012/JPEGImages/' + data_anno['image'] + '.jpg'
img = cv2.imread(os.path.join(img_root, image_name))
image = {}
image['id'] = img_id
image['file_name'] = image_name
image['height'] = img.shape[0]
image['width'] = img.shape[1]
images.append(image)
img_ids.append(img_id)
else:
pass
keypoint_anno = data_anno['keypoints']['keypoint']
assert len(keypoint_anno) == 20
keypoints = np.zeros([20, 3], dtype=np.float32)
for kpt_anno in keypoint_anno:
keypoint_name = kpt_anno['@name']
keypoint_id = name2id[keypoint_name]
visibility = int(kpt_anno['@visible'])
if visibility == 0:
continue
else:
keypoints[keypoint_id, 0] = float(kpt_anno['@x'])
keypoints[keypoint_id, 1] = float(kpt_anno['@y'])
keypoints[keypoint_id, 2] = 2
anno = {}
anno['keypoints'] = keypoints.reshape(-1).tolist()
anno['image_id'] = img_id
anno['id'] = ann_id
anno['num_keypoints'] = int(sum(keypoints[:, 2] > 0))
visible_bounds = data_anno['visible_bounds']
anno['bbox'] = [
float(visible_bounds['@xmin']),
float(visible_bounds['@ymin']),
float(visible_bounds['@width']),
float(visible_bounds['@height'])
]
anno['iscrowd'] = 0
anno['area'] = float(anno['bbox'][2] * anno['bbox'][3])
anno['category_id'] = 1
annotations.append(anno)
ann_ids.append(ann_id)
ann_id += 1
cocotype = {}
cocotype['info'] = {}
cocotype['info'][
'description'] = 'AnimalPose dataset Generated by MMPose Team'
cocotype['info']['version'] = '1.0'
cocotype['info']['year'] = time.strftime('%Y', time.localtime())
cocotype['info']['date_created'] = time.strftime('%Y/%m/%d',
time.localtime())
cocotype['images'] = images
cocotype['annotations'] = annotations
keypoints_info, skeleton_info, category_info = get_anno_info()
cocotype['categories'] = category_info
os.makedirs(os.path.dirname(save_path), exist_ok=True)
json.dump(cocotype, open(save_path, 'w'), indent=4)
print('number of images:', len(img_ids))
print('number of annotations:', len(ann_ids))
print(f'done {save_path}')
def xml2coco_test(file_list, img_root, save_path, start_ann_id=0):
"""Save annotations in coco-format.
:param file_list: list of data annotation files.
:param img_root: the root dir to load images.
:param save_path: the path to save transformed annotation file.
:param start_ann_id: the starting point to count the annotation id.
"""
images = []
annotations = []
img_ids = []
ann_ids = []
ann_id = start_ann_id
name2id = {
'L_eye': 0,
'R_eye': 1,
'L_ear': 2,
'R_ear': 3,
'Nose': 4,
'Throat': 5,
'Tail': 6,
'withers': 7,
'L_F_elbow': 8,
'R_F_elbow': 9,
'L_B_elbow': 10,
'R_B_elbow': 11,
'L_F_knee': 12,
'R_F_knee': 13,
'L_B_knee': 14,
'R_B_knee': 15,
'L_F_paw': 16,
'R_F_paw': 17,
'L_B_paw': 18,
'R_B_paw': 19
}
cat2id = {'cat': 1, 'cow': 2, 'dog': 3, 'horse': 4, 'sheep': 5}
for file in file_list:
data_anno = xmltodict.parse(open(file).read())['annotation']
category_id = cat2id[data_anno['category']]
img_id = category_id * 1000 + int(
re.findall(r'\d+', data_anno['image'])[0])
assert img_id not in img_ids
# prepare images
image_name = os.path.join('animalpose_image_part2',
data_anno['category'], data_anno['image'])
img = cv2.imread(os.path.join(img_root, image_name))
image = {}
image['id'] = img_id
image['file_name'] = image_name
image['height'] = img.shape[0]
image['width'] = img.shape[1]
images.append(image)
img_ids.append(img_id)
# prepare annotations
keypoint_anno = data_anno['keypoints']['keypoint']
keypoints = np.zeros([20, 3], dtype=np.float32)
for kpt_anno in keypoint_anno:
keypoint_name = kpt_anno['@name']
keypoint_id = name2id[keypoint_name]
visibility = int(kpt_anno['@visible'])
if visibility == 0:
continue
else:
keypoints[keypoint_id, 0] = float(kpt_anno['@x'])
keypoints[keypoint_id, 1] = float(kpt_anno['@y'])
keypoints[keypoint_id, 2] = 2
anno = {}
anno['keypoints'] = keypoints.reshape(-1).tolist()
anno['image_id'] = img_id
anno['id'] = ann_id
anno['num_keypoints'] = int(sum(keypoints[:, 2] > 0))
visible_bounds = data_anno['visible_bounds']
anno['bbox'] = [
float(visible_bounds['@xmin']),
float(visible_bounds['@xmax']
), # typo in original xml: should be 'ymin'
float(visible_bounds['@width']),
float(visible_bounds['@height'])
]
anno['iscrowd'] = 0
anno['area'] = float(anno['bbox'][2] * anno['bbox'][3])
anno['category_id'] = 1
annotations.append(anno)
ann_ids.append(ann_id)
ann_id += 1
cocotype = {}
cocotype['info'] = {}
cocotype['info'][
'description'] = 'AnimalPose dataset Generated by MMPose Team'
cocotype['info']['version'] = '1.0'
cocotype['info']['year'] = time.strftime('%Y', time.localtime())
cocotype['info']['date_created'] = time.strftime('%Y/%m/%d',
time.localtime())
cocotype['images'] = images
cocotype['annotations'] = annotations
keypoints_info, skeleton_info, category_info = get_anno_info()
cocotype['categories'] = category_info
os.makedirs(os.path.dirname(save_path), exist_ok=True)
json.dump(cocotype, open(save_path, 'w'), indent=4)
print('=========================================================')
print('number of images:', len(img_ids))
print('number of annotations:', len(ann_ids))
print(f'done {save_path}')
def split_train_val(work_dir, trainval_file, train_file, val_file,
val_ann_num):
"""Split train-val json file into training and validation files.
:param work_dir: path to load train-val json file, and save split files.
:param trainval_file: The input json file combining both train and val.
:param trainval_file: The output json file for training.
:param trainval_file: The output json file for validation.
:param val_ann_num: the number of validation annotations.
"""
coco = COCO(os.path.join(work_dir, trainval_file))
img_list = list(coco.imgs.keys())
np.random.shuffle(img_list)
count = 0
images_train = []
images_val = []
annotations_train = []
annotations_val = []
for img_id in img_list:
ann_ids = coco.getAnnIds(img_id)
if count + len(ann_ids) <= val_ann_num:
# for validation
count += len(ann_ids)
images_val.append(coco.imgs[img_id])
for ann_id in ann_ids:
annotations_val.append(coco.anns[ann_id])
else:
images_train.append(coco.imgs[img_id])
for ann_id in ann_ids:
annotations_train.append(coco.anns[ann_id])
if count == val_ann_num:
print(f'We have found {count} annotations for validation.')
else:
warnings.warn(
f'We only found {count} annotations, instead of {val_ann_num}.')
cocotype_train = {}
cocotype_val = {}
keypoints_info, skeleton_info, category_info = get_anno_info()
cocotype_train['info'] = {}
cocotype_train['info'][
'description'] = 'AnimalPose dataset Generated by MMPose Team'
cocotype_train['info']['version'] = '1.0'
cocotype_train['info']['year'] = time.strftime('%Y', time.localtime())
cocotype_train['info']['date_created'] = time.strftime(
'%Y/%m/%d', time.localtime())
cocotype_train['images'] = images_train
cocotype_train['annotations'] = annotations_train
cocotype_train['categories'] = category_info
json.dump(
cocotype_train,
open(os.path.join(work_dir, train_file), 'w'),
indent=4)
print('=========================================================')
print('number of images:', len(images_train))
print('number of annotations:', len(annotations_train))
print(f'done {train_file}')
cocotype_val['info'] = {}
cocotype_val['info'][
'description'] = 'AnimalPose dataset Generated by MMPose Team'
cocotype_val['info']['version'] = '1.0'
cocotype_val['info']['year'] = time.strftime('%Y', time.localtime())
cocotype_val['info']['date_created'] = time.strftime(
'%Y/%m/%d', time.localtime())
cocotype_val['images'] = images_val
cocotype_val['annotations'] = annotations_val
cocotype_val['categories'] = category_info
json.dump(
cocotype_val, open(os.path.join(work_dir, val_file), 'w'), indent=4)
print('=========================================================')
print('number of images:', len(images_val))
print('number of annotations:', len(annotations_val))
print(f'done {val_file}')
dataset_dir = 'data/animalpose/'
# We choose the images from PascalVOC for train + val
# In total, train+val: 3608 images, 5117 annotations
xml2coco_trainval(
list_all_files(os.path.join(dataset_dir, 'PASCAL2011_animal_annotation')),
dataset_dir,
os.path.join(dataset_dir, 'annotations', 'animalpose_trainval.json'),
start_ann_id=1000000)
# train: 2798 images, 4000 annotations
# val: 810 images, 1117 annotations
split_train_val(
os.path.join(dataset_dir, 'annotations'),
'animalpose_trainval.json',
'animalpose_train.json',
'animalpose_val.json',
val_ann_num=1117)
# We choose the remaining 1000 images for test
# 1000 images, 1000 annotations
xml2coco_test(
list_all_files(os.path.join(dataset_dir, 'animalpose_anno2')),
dataset_dir,
os.path.join(dataset_dir, 'annotations', 'animalpose_test.json'),
start_ann_id=0)
|