File size: 18,048 Bytes
d7a991a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
# 2D Body Keypoint Datasets

It is recommended to symlink the dataset root to `$MMPOSE/data`.
If your folder structure is different, you may need to change the corresponding paths in config files.

MMPose supported datasets:

- Images
  - [COCO](#coco) \[ [Homepage](http://cocodataset.org/) \]
  - [MPII](#mpii) \[ [Homepage](http://human-pose.mpi-inf.mpg.de/) \]
  - [MPII-TRB](#mpii-trb) \[ [Homepage](https://github.com/kennymckormick/Triplet-Representation-of-human-Body) \]
  - [AI Challenger](#aic) \[ [Homepage](https://github.com/AIChallenger/AI_Challenger_2017) \]
  - [CrowdPose](#crowdpose) \[ [Homepage](https://github.com/Jeff-sjtu/CrowdPose) \]
  - [OCHuman](#ochuman) \[ [Homepage](https://github.com/liruilong940607/OCHumanApi) \]
  - [MHP](#mhp) \[ [Homepage](https://lv-mhp.github.io/dataset) \]
- Videos
  - [PoseTrack18](#posetrack18) \[ [Homepage](https://posetrack.net/users/download.php) \]
  - [sub-JHMDB](#sub-jhmdb-dataset) \[ [Homepage](http://jhmdb.is.tue.mpg.de/dataset) \]

## COCO

<!-- [DATASET] -->

<details>
<summary align="right"><a href="https://link.springer.com/chapter/10.1007/978-3-319-10602-1_48">COCO (ECCV'2014)</a></summary>

```bibtex
@inproceedings{lin2014microsoft,
  title={Microsoft coco: Common objects in context},
  author={Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence},
  booktitle={European conference on computer vision},
  pages={740--755},
  year={2014},
  organization={Springer}
}
```

</details>

For [COCO](http://cocodataset.org/) data, please download from [COCO download](http://cocodataset.org/#download), 2017 Train/Val is needed for COCO keypoints training and validation.
[HRNet-Human-Pose-Estimation](https://github.com/HRNet/HRNet-Human-Pose-Estimation) provides person detection result of COCO val2017 to reproduce our multi-person pose estimation results.
Please download from [OneDrive](https://1drv.ms/f/s!AhIXJn_J-blWzzDXoz5BeFl8sWM-) or [GoogleDrive](https://drive.google.com/drive/folders/1fRUDNUDxe9fjqcRZ2bnF_TKMlO0nB_dk?usp=sharing).
Optionally, to evaluate on COCO'2017 test-dev, please download the [image-info](https://download.openmmlab.com/mmpose/datasets/person_keypoints_test-dev-2017.json).
Download and extract them under $MMPOSE/data, and make them look like this:

```text
mmpose
β”œβ”€β”€ mmpose
β”œβ”€β”€ docs
β”œβ”€β”€ tests
β”œβ”€β”€ tools
β”œβ”€β”€ configs
`── data
    │── coco
        β”‚-- annotations
        β”‚   β”‚-- person_keypoints_train2017.json
        β”‚   |-- person_keypoints_val2017.json
        β”‚   |-- person_keypoints_test-dev-2017.json
        |-- person_detection_results
        |   |-- COCO_val2017_detections_AP_H_56_person.json
        |   |-- COCO_test-dev2017_detections_AP_H_609_person.json
        β”‚-- train2017
        β”‚   β”‚-- 000000000009.jpg
        β”‚   β”‚-- 000000000025.jpg
        β”‚   β”‚-- 000000000030.jpg
        β”‚   β”‚-- ...
        `-- val2017
            β”‚-- 000000000139.jpg
            β”‚-- 000000000285.jpg
            β”‚-- 000000000632.jpg
            β”‚-- ...

```

## MPII

<!-- [DATASET] -->

<details>
<summary align="right"><a href="http://openaccess.thecvf.com/content_cvpr_2014/html/Andriluka_2D_Human_Pose_2014_CVPR_paper.html">MPII (CVPR'2014)</a></summary>

```bibtex
@inproceedings{andriluka14cvpr,
  author = {Mykhaylo Andriluka and Leonid Pishchulin and Peter Gehler and Schiele, Bernt},
  title = {2D Human Pose Estimation: New Benchmark and State of the Art Analysis},
  booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
  year = {2014},
  month = {June}
}
```

</details>

For [MPII](http://human-pose.mpi-inf.mpg.de/) data, please download from [MPII Human Pose Dataset](http://human-pose.mpi-inf.mpg.de/).
We have converted the original annotation files into json format, please download them from [mpii_annotations](https://download.openmmlab.com/mmpose/datasets/mpii_annotations.tar).
Extract them under {MMPose}/data, and make them look like this:

```text
mmpose
β”œβ”€β”€ mmpose
β”œβ”€β”€ docs
β”œβ”€β”€ tests
β”œβ”€β”€ tools
β”œβ”€β”€ configs
`── data
    │── mpii
        |── annotations
        |   |── mpii_gt_val.mat
        |   |── mpii_test.json
        |   |── mpii_train.json
        |   |── mpii_trainval.json
        |   `── mpii_val.json
        `── images
            |── 000001163.jpg
            |── 000003072.jpg

```

During training and inference, the prediction result will be saved as '.mat' format by default. We also provide a tool to convert this '.mat' to more readable '.json' format.

```shell
python tools/dataset/mat2json ${PRED_MAT_FILE} ${GT_JSON_FILE} ${OUTPUT_PRED_JSON_FILE}
```

For example,

```shell
python tools/dataset/mat2json work_dirs/res50_mpii_256x256/pred.mat data/mpii/annotations/mpii_val.json pred.json
```

## MPII-TRB

<!-- [DATASET] -->

<details>
<summary align="right"><a href="http://openaccess.thecvf.com/content_ICCV_2019/html/Duan_TRB_A_Novel_Triplet_Representation_for_Understanding_2D_Human_Body_ICCV_2019_paper.html">MPII-TRB (ICCV'2019)</a></summary>

```bibtex
@inproceedings{duan2019trb,
  title={TRB: A Novel Triplet Representation for Understanding 2D Human Body},
  author={Duan, Haodong and Lin, Kwan-Yee and Jin, Sheng and Liu, Wentao and Qian, Chen and Ouyang, Wanli},
  booktitle={Proceedings of the IEEE International Conference on Computer Vision},
  pages={9479--9488},
  year={2019}
}
```

</details>

For [MPII-TRB](https://github.com/kennymckormick/Triplet-Representation-of-human-Body) data, please download from [MPII Human Pose Dataset](http://human-pose.mpi-inf.mpg.de/).
Please download the annotation files from [mpii_trb_annotations](https://download.openmmlab.com/mmpose/datasets/mpii_trb_annotations.tar).
Extract them under {MMPose}/data, and make them look like this:

```text
mmpose
β”œβ”€β”€ mmpose
β”œβ”€β”€ docs
β”œβ”€β”€ tests
β”œβ”€β”€ tools
β”œβ”€β”€ configs
`── data
    │── mpii
        |── annotations
        |   |── mpii_trb_train.json
        |   |── mpii_trb_val.json
        `── images
            |── 000001163.jpg
            |── 000003072.jpg

```

## AIC

<!-- [DATASET] -->

<details>
<summary align="right"><a href="https://arxiv.org/abs/1711.06475">AI Challenger (ArXiv'2017)</a></summary>

```bibtex
@article{wu2017ai,
  title={Ai challenger: A large-scale dataset for going deeper in image understanding},
  author={Wu, Jiahong and Zheng, He and Zhao, Bo and Li, Yixin and Yan, Baoming and Liang, Rui and Wang, Wenjia and Zhou, Shipei and Lin, Guosen and Fu, Yanwei and others},
  journal={arXiv preprint arXiv:1711.06475},
  year={2017}
}
```

</details>

For [AIC](https://github.com/AIChallenger/AI_Challenger_2017) data, please download from [AI Challenger 2017](https://github.com/AIChallenger/AI_Challenger_2017), 2017 Train/Val is needed for keypoints training and validation.
Please download the annotation files from [aic_annotations](https://download.openmmlab.com/mmpose/datasets/aic_annotations.tar).
Download and extract them under $MMPOSE/data, and make them look like this:

```text
mmpose
β”œβ”€β”€ mmpose
β”œβ”€β”€ docs
β”œβ”€β”€ tests
β”œβ”€β”€ tools
β”œβ”€β”€ configs
`── data
    │── aic
        β”‚-- annotations
        β”‚   β”‚-- aic_train.json
        β”‚   |-- aic_val.json
        β”‚-- ai_challenger_keypoint_train_20170902
        β”‚   β”‚-- keypoint_train_images_20170902
        β”‚   β”‚   β”‚-- 0000252aea98840a550dac9a78c476ecb9f47ffa.jpg
        β”‚   β”‚   β”‚-- 000050f770985ac9653198495ef9b5c82435d49c.jpg
        β”‚   β”‚   β”‚-- ...
        `-- ai_challenger_keypoint_validation_20170911
            β”‚-- keypoint_validation_images_20170911
                β”‚-- 0002605c53fb92109a3f2de4fc3ce06425c3b61f.jpg
                β”‚-- 0003b55a2c991223e6d8b4b820045bd49507bf6d.jpg
                β”‚-- ...
```

## CrowdPose

<!-- [DATASET] -->

<details>
<summary align="right"><a href="http://openaccess.thecvf.com/content_CVPR_2019/html/Li_CrowdPose_Efficient_Crowded_Scenes_Pose_Estimation_and_a_New_Benchmark_CVPR_2019_paper.html">CrowdPose (CVPR'2019)</a></summary>

```bibtex
@article{li2018crowdpose,
  title={CrowdPose: Efficient Crowded Scenes Pose Estimation and A New Benchmark},
  author={Li, Jiefeng and Wang, Can and Zhu, Hao and Mao, Yihuan and Fang, Hao-Shu and Lu, Cewu},
  journal={arXiv preprint arXiv:1812.00324},
  year={2018}
}
```

</details>

For [CrowdPose](https://github.com/Jeff-sjtu/CrowdPose) data, please download from [CrowdPose](https://github.com/Jeff-sjtu/CrowdPose).
Please download the annotation files and human detection results from [crowdpose_annotations](https://download.openmmlab.com/mmpose/datasets/crowdpose_annotations.tar).
For top-down approaches, we follow [CrowdPose](https://arxiv.org/abs/1812.00324) to use the [pre-trained weights](https://pjreddie.com/media/files/yolov3.weights) of [YOLOv3](https://github.com/eriklindernoren/PyTorch-YOLOv3) to generate the detected human bounding boxes.
For model training, we follow [HigherHRNet](https://github.com/HRNet/HigherHRNet-Human-Pose-Estimation) to train models on CrowdPose train/val dataset, and evaluate models on CrowdPose test dataset.
Download and extract them under $MMPOSE/data, and make them look like this:

```text
mmpose
β”œβ”€β”€ mmpose
β”œβ”€β”€ docs
β”œβ”€β”€ tests
β”œβ”€β”€ tools
β”œβ”€β”€ configs
`── data
    │── crowdpose
        β”‚-- annotations
        β”‚   β”‚-- mmpose_crowdpose_train.json
        β”‚   β”‚-- mmpose_crowdpose_val.json
        β”‚   β”‚-- mmpose_crowdpose_trainval.json
        β”‚   β”‚-- mmpose_crowdpose_test.json
        β”‚   β”‚-- det_for_crowd_test_0.1_0.5.json
        β”‚-- images
            β”‚-- 100000.jpg
            β”‚-- 100001.jpg
            β”‚-- 100002.jpg
            β”‚-- ...
```

## OCHuman

<!-- [DATASET] -->

<details>
<summary align="right"><a href="http://openaccess.thecvf.com/content_CVPR_2019/html/Zhang_Pose2Seg_Detection_Free_Human_Instance_Segmentation_CVPR_2019_paper.html">OCHuman (CVPR'2019)</a></summary>

```bibtex
@inproceedings{zhang2019pose2seg,
  title={Pose2seg: Detection free human instance segmentation},
  author={Zhang, Song-Hai and Li, Ruilong and Dong, Xin and Rosin, Paul and Cai, Zixi and Han, Xi and Yang, Dingcheng and Huang, Haozhi and Hu, Shi-Min},
  booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
  pages={889--898},
  year={2019}
}
```

</details>

For [OCHuman](https://github.com/liruilong940607/OCHumanApi) data, please download the images and annotations from [OCHuman](https://github.com/liruilong940607/OCHumanApi),
Move them under $MMPOSE/data, and make them look like this:

```text
mmpose
β”œβ”€β”€ mmpose
β”œβ”€β”€ docs
β”œβ”€β”€ tests
β”œβ”€β”€ tools
β”œβ”€β”€ configs
`── data
    │── ochuman
        β”‚-- annotations
        β”‚   β”‚-- ochuman_coco_format_val_range_0.00_1.00.json
        β”‚   |-- ochuman_coco_format_test_range_0.00_1.00.json
        |-- images
            β”‚-- 000001.jpg
            β”‚-- 000002.jpg
            β”‚-- 000003.jpg
            β”‚-- ...

```

## MHP

<!-- [DATASET] -->

<details>
<summary align="right"><a href="https://dl.acm.org/doi/abs/10.1145/3240508.3240509">MHP (ACM MM'2018)</a></summary>

```bibtex
@inproceedings{zhao2018understanding,
  title={Understanding humans in crowded scenes: Deep nested adversarial learning and a new benchmark for multi-human parsing},
  author={Zhao, Jian and Li, Jianshu and Cheng, Yu and Sim, Terence and Yan, Shuicheng and Feng, Jiashi},
  booktitle={Proceedings of the 26th ACM international conference on Multimedia},
  pages={792--800},
  year={2018}
}
```

</details>

For [MHP](https://lv-mhp.github.io/dataset) data, please download from [MHP](https://lv-mhp.github.io/dataset).
Please download the annotation files from [mhp_annotations](https://download.openmmlab.com/mmpose/datasets/mhp_annotations.tar.gz).
Please download and extract them under $MMPOSE/data, and make them look like this:

```text
mmpose
β”œβ”€β”€ mmpose
β”œβ”€β”€ docs
β”œβ”€β”€ tests
β”œβ”€β”€ tools
β”œβ”€β”€ configs
`── data
    │── mhp
        β”‚-- annotations
        β”‚   β”‚-- mhp_train.json
        β”‚   β”‚-- mhp_val.json
        β”‚
        `-- train
        β”‚   β”‚-- images
        β”‚   β”‚   β”‚-- 1004.jpg
        β”‚   β”‚   β”‚-- 10050.jpg
        β”‚   β”‚   β”‚-- ...
        β”‚
        `-- val
        β”‚   β”‚-- images
        β”‚   β”‚   β”‚-- 10059.jpg
        β”‚   β”‚   β”‚-- 10068.jpg
        β”‚   β”‚   β”‚-- ...
        β”‚
        `-- test
        β”‚   β”‚-- images
        β”‚   β”‚   β”‚-- 1005.jpg
        β”‚   β”‚   β”‚-- 10052.jpg
        β”‚   β”‚   β”‚-- ...~~~~
```

## PoseTrack18

<!-- [DATASET] -->

<details>
<summary align="right"><a href="http://openaccess.thecvf.com/content_cvpr_2018/html/Andriluka_PoseTrack_A_Benchmark_CVPR_2018_paper.html">PoseTrack18 (CVPR'2018)</a></summary>

```bibtex
@inproceedings{andriluka2018posetrack,
  title={Posetrack: A benchmark for human pose estimation and tracking},
  author={Andriluka, Mykhaylo and Iqbal, Umar and Insafutdinov, Eldar and Pishchulin, Leonid and Milan, Anton and Gall, Juergen and Schiele, Bernt},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  pages={5167--5176},
  year={2018}
}
```

</details>

For [PoseTrack18](https://posetrack.net/users/download.php) data, please download from [PoseTrack18](https://posetrack.net/users/download.php).
Please download the annotation files from [posetrack18_annotations](https://download.openmmlab.com/mmpose/datasets/posetrack18_annotations.tar).
We have merged the video-wise separated official annotation files into two json files (posetrack18_train & posetrack18_val.json). We also generate the [mask files](https://download.openmmlab.com/mmpose/datasets/posetrack18_mask.tar) to speed up training.
For top-down approaches, we use [MMDetection](https://github.com/open-mmlab/mmdetection) pre-trained [Cascade R-CNN](https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_x101_64x4d_fpn_20e_coco/cascade_rcnn_x101_64x4d_fpn_20e_coco_20200509_224357-051557b1.pth) (X-101-64x4d-FPN) to generate the detected human bounding boxes.
Please download and extract them under $MMPOSE/data, and make them look like this:

```text
mmpose
β”œβ”€β”€ mmpose
β”œβ”€β”€ docs
β”œβ”€β”€ tests
β”œβ”€β”€ tools
β”œβ”€β”€ configs
`── data
    │── posetrack18
        β”‚-- annotations
        β”‚   β”‚-- posetrack18_train.json
        β”‚   β”‚-- posetrack18_val.json
        β”‚   β”‚-- posetrack18_val_human_detections.json
        β”‚   β”‚-- train
        β”‚   β”‚   β”‚-- 000001_bonn_train.json
        β”‚   β”‚   β”‚-- 000002_bonn_train.json
        β”‚   β”‚   β”‚-- ...
        β”‚   β”‚-- val
        β”‚   β”‚   β”‚-- 000342_mpii_test.json
        β”‚   β”‚   β”‚-- 000522_mpii_test.json
        β”‚   β”‚   β”‚-- ...
        β”‚   `-- test
        β”‚       β”‚-- 000001_mpiinew_test.json
        β”‚       β”‚-- 000002_mpiinew_test.json
        β”‚       β”‚-- ...
        β”‚
        `-- images
        β”‚   β”‚-- train
        β”‚   β”‚   β”‚-- 000001_bonn_train
        β”‚   β”‚   β”‚   β”‚-- 000000.jpg
        β”‚   β”‚   β”‚   β”‚-- 000001.jpg
        β”‚   β”‚   β”‚   β”‚-- ...
        β”‚   β”‚   β”‚-- ...
        β”‚   β”‚-- val
        β”‚   β”‚   β”‚-- 000342_mpii_test
        β”‚   β”‚   β”‚   β”‚-- 000000.jpg
        β”‚   β”‚   β”‚   β”‚-- 000001.jpg
        β”‚   β”‚   β”‚   β”‚-- ...
        β”‚   β”‚   β”‚-- ...
        β”‚   `-- test
        β”‚       β”‚-- 000001_mpiinew_test
        β”‚       β”‚   β”‚-- 000000.jpg
        β”‚       β”‚   β”‚-- 000001.jpg
        β”‚       β”‚   β”‚-- ...
        β”‚       β”‚-- ...
        `-- mask
            β”‚-- train
            β”‚   β”‚-- 000002_bonn_train
            β”‚   β”‚   β”‚-- 000000.jpg
            β”‚   β”‚   β”‚-- 000001.jpg
            β”‚   β”‚   β”‚-- ...
            β”‚   β”‚-- ...
            `-- val
                β”‚-- 000522_mpii_test
                β”‚   β”‚-- 000000.jpg
                β”‚   β”‚-- 000001.jpg
                β”‚   β”‚-- ...
                β”‚-- ...
```

The official evaluation tool for PoseTrack should be installed from GitHub.

```shell
pip install git+https://github.com/svenkreiss/poseval.git
```

## sub-JHMDB dataset

<!-- [DATASET] -->

<details>
<summary align="right"><a href="https://link.springer.com/chapter/10.1007/978-3-030-58580-8_27">RSN (ECCV'2020)</a></summary>

```bibtex
@misc{cai2020learning,
    title={Learning Delicate Local Representations for Multi-Person Pose Estimation},
    author={Yuanhao Cai and Zhicheng Wang and Zhengxiong Luo and Binyi Yin and Angang Du and Haoqian Wang and Xinyu Zhou and Erjin Zhou and Xiangyu Zhang and Jian Sun},
    year={2020},
    eprint={2003.04030},
    archivePrefix={arXiv},
    primaryClass={cs.CV}
}
```

</details>

For [sub-JHMDB](http://jhmdb.is.tue.mpg.de/dataset) data, please download the [images](<(http://files.is.tue.mpg.de/jhmdb/Rename_Images.tar.gz)>) from [JHMDB](http://jhmdb.is.tue.mpg.de/dataset),
Please download the annotation files from [jhmdb_annotations](https://download.openmmlab.com/mmpose/datasets/jhmdb_annotations.tar).
Move them under $MMPOSE/data, and make them look like this:

```text
mmpose
β”œβ”€β”€ mmpose
β”œβ”€β”€ docs
β”œβ”€β”€ tests
β”œβ”€β”€ tools
β”œβ”€β”€ configs
`── data
    │── jhmdb
        β”‚-- annotations
        β”‚   β”‚-- Sub1_train.json
        β”‚   |-- Sub1_test.json
        β”‚   β”‚-- Sub2_train.json
        β”‚   |-- Sub2_test.json
        β”‚   β”‚-- Sub3_train.json
        β”‚   |-- Sub3_test.json
        |-- Rename_Images
            β”‚-- brush_hair
            β”‚   β”‚--April_09_brush_hair_u_nm_np1_ba_goo_0
            |   β”‚   β”‚--00001.png
            |   β”‚   β”‚--00002.png
            β”‚-- catch
            β”‚-- ...

```