Spaces:
Build error
Build error
File size: 18,048 Bytes
d7a991a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 |
# 2D Body Keypoint Datasets
It is recommended to symlink the dataset root to `$MMPOSE/data`.
If your folder structure is different, you may need to change the corresponding paths in config files.
MMPose supported datasets:
- Images
- [COCO](#coco) \[ [Homepage](http://cocodataset.org/) \]
- [MPII](#mpii) \[ [Homepage](http://human-pose.mpi-inf.mpg.de/) \]
- [MPII-TRB](#mpii-trb) \[ [Homepage](https://github.com/kennymckormick/Triplet-Representation-of-human-Body) \]
- [AI Challenger](#aic) \[ [Homepage](https://github.com/AIChallenger/AI_Challenger_2017) \]
- [CrowdPose](#crowdpose) \[ [Homepage](https://github.com/Jeff-sjtu/CrowdPose) \]
- [OCHuman](#ochuman) \[ [Homepage](https://github.com/liruilong940607/OCHumanApi) \]
- [MHP](#mhp) \[ [Homepage](https://lv-mhp.github.io/dataset) \]
- Videos
- [PoseTrack18](#posetrack18) \[ [Homepage](https://posetrack.net/users/download.php) \]
- [sub-JHMDB](#sub-jhmdb-dataset) \[ [Homepage](http://jhmdb.is.tue.mpg.de/dataset) \]
## COCO
<!-- [DATASET] -->
<details>
<summary align="right"><a href="https://link.springer.com/chapter/10.1007/978-3-319-10602-1_48">COCO (ECCV'2014)</a></summary>
```bibtex
@inproceedings{lin2014microsoft,
title={Microsoft coco: Common objects in context},
author={Lin, Tsung-Yi and Maire, Michael and Belongie, Serge and Hays, James and Perona, Pietro and Ramanan, Deva and Doll{\'a}r, Piotr and Zitnick, C Lawrence},
booktitle={European conference on computer vision},
pages={740--755},
year={2014},
organization={Springer}
}
```
</details>
For [COCO](http://cocodataset.org/) data, please download from [COCO download](http://cocodataset.org/#download), 2017 Train/Val is needed for COCO keypoints training and validation.
[HRNet-Human-Pose-Estimation](https://github.com/HRNet/HRNet-Human-Pose-Estimation) provides person detection result of COCO val2017 to reproduce our multi-person pose estimation results.
Please download from [OneDrive](https://1drv.ms/f/s!AhIXJn_J-blWzzDXoz5BeFl8sWM-) or [GoogleDrive](https://drive.google.com/drive/folders/1fRUDNUDxe9fjqcRZ2bnF_TKMlO0nB_dk?usp=sharing).
Optionally, to evaluate on COCO'2017 test-dev, please download the [image-info](https://download.openmmlab.com/mmpose/datasets/person_keypoints_test-dev-2017.json).
Download and extract them under $MMPOSE/data, and make them look like this:
```text
mmpose
βββ mmpose
βββ docs
βββ tests
βββ tools
βββ configs
`ββ data
βββ coco
β-- annotations
β β-- person_keypoints_train2017.json
β |-- person_keypoints_val2017.json
β |-- person_keypoints_test-dev-2017.json
|-- person_detection_results
| |-- COCO_val2017_detections_AP_H_56_person.json
| |-- COCO_test-dev2017_detections_AP_H_609_person.json
β-- train2017
β β-- 000000000009.jpg
β β-- 000000000025.jpg
β β-- 000000000030.jpg
β β-- ...
`-- val2017
β-- 000000000139.jpg
β-- 000000000285.jpg
β-- 000000000632.jpg
β-- ...
```
## MPII
<!-- [DATASET] -->
<details>
<summary align="right"><a href="http://openaccess.thecvf.com/content_cvpr_2014/html/Andriluka_2D_Human_Pose_2014_CVPR_paper.html">MPII (CVPR'2014)</a></summary>
```bibtex
@inproceedings{andriluka14cvpr,
author = {Mykhaylo Andriluka and Leonid Pishchulin and Peter Gehler and Schiele, Bernt},
title = {2D Human Pose Estimation: New Benchmark and State of the Art Analysis},
booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
year = {2014},
month = {June}
}
```
</details>
For [MPII](http://human-pose.mpi-inf.mpg.de/) data, please download from [MPII Human Pose Dataset](http://human-pose.mpi-inf.mpg.de/).
We have converted the original annotation files into json format, please download them from [mpii_annotations](https://download.openmmlab.com/mmpose/datasets/mpii_annotations.tar).
Extract them under {MMPose}/data, and make them look like this:
```text
mmpose
βββ mmpose
βββ docs
βββ tests
βββ tools
βββ configs
`ββ data
βββ mpii
|ββ annotations
| |ββ mpii_gt_val.mat
| |ββ mpii_test.json
| |ββ mpii_train.json
| |ββ mpii_trainval.json
| `ββ mpii_val.json
`ββ images
|ββ 000001163.jpg
|ββ 000003072.jpg
```
During training and inference, the prediction result will be saved as '.mat' format by default. We also provide a tool to convert this '.mat' to more readable '.json' format.
```shell
python tools/dataset/mat2json ${PRED_MAT_FILE} ${GT_JSON_FILE} ${OUTPUT_PRED_JSON_FILE}
```
For example,
```shell
python tools/dataset/mat2json work_dirs/res50_mpii_256x256/pred.mat data/mpii/annotations/mpii_val.json pred.json
```
## MPII-TRB
<!-- [DATASET] -->
<details>
<summary align="right"><a href="http://openaccess.thecvf.com/content_ICCV_2019/html/Duan_TRB_A_Novel_Triplet_Representation_for_Understanding_2D_Human_Body_ICCV_2019_paper.html">MPII-TRB (ICCV'2019)</a></summary>
```bibtex
@inproceedings{duan2019trb,
title={TRB: A Novel Triplet Representation for Understanding 2D Human Body},
author={Duan, Haodong and Lin, Kwan-Yee and Jin, Sheng and Liu, Wentao and Qian, Chen and Ouyang, Wanli},
booktitle={Proceedings of the IEEE International Conference on Computer Vision},
pages={9479--9488},
year={2019}
}
```
</details>
For [MPII-TRB](https://github.com/kennymckormick/Triplet-Representation-of-human-Body) data, please download from [MPII Human Pose Dataset](http://human-pose.mpi-inf.mpg.de/).
Please download the annotation files from [mpii_trb_annotations](https://download.openmmlab.com/mmpose/datasets/mpii_trb_annotations.tar).
Extract them under {MMPose}/data, and make them look like this:
```text
mmpose
βββ mmpose
βββ docs
βββ tests
βββ tools
βββ configs
`ββ data
βββ mpii
|ββ annotations
| |ββ mpii_trb_train.json
| |ββ mpii_trb_val.json
`ββ images
|ββ 000001163.jpg
|ββ 000003072.jpg
```
## AIC
<!-- [DATASET] -->
<details>
<summary align="right"><a href="https://arxiv.org/abs/1711.06475">AI Challenger (ArXiv'2017)</a></summary>
```bibtex
@article{wu2017ai,
title={Ai challenger: A large-scale dataset for going deeper in image understanding},
author={Wu, Jiahong and Zheng, He and Zhao, Bo and Li, Yixin and Yan, Baoming and Liang, Rui and Wang, Wenjia and Zhou, Shipei and Lin, Guosen and Fu, Yanwei and others},
journal={arXiv preprint arXiv:1711.06475},
year={2017}
}
```
</details>
For [AIC](https://github.com/AIChallenger/AI_Challenger_2017) data, please download from [AI Challenger 2017](https://github.com/AIChallenger/AI_Challenger_2017), 2017 Train/Val is needed for keypoints training and validation.
Please download the annotation files from [aic_annotations](https://download.openmmlab.com/mmpose/datasets/aic_annotations.tar).
Download and extract them under $MMPOSE/data, and make them look like this:
```text
mmpose
βββ mmpose
βββ docs
βββ tests
βββ tools
βββ configs
`ββ data
βββ aic
β-- annotations
β β-- aic_train.json
β |-- aic_val.json
β-- ai_challenger_keypoint_train_20170902
β β-- keypoint_train_images_20170902
β β β-- 0000252aea98840a550dac9a78c476ecb9f47ffa.jpg
β β β-- 000050f770985ac9653198495ef9b5c82435d49c.jpg
β β β-- ...
`-- ai_challenger_keypoint_validation_20170911
β-- keypoint_validation_images_20170911
β-- 0002605c53fb92109a3f2de4fc3ce06425c3b61f.jpg
β-- 0003b55a2c991223e6d8b4b820045bd49507bf6d.jpg
β-- ...
```
## CrowdPose
<!-- [DATASET] -->
<details>
<summary align="right"><a href="http://openaccess.thecvf.com/content_CVPR_2019/html/Li_CrowdPose_Efficient_Crowded_Scenes_Pose_Estimation_and_a_New_Benchmark_CVPR_2019_paper.html">CrowdPose (CVPR'2019)</a></summary>
```bibtex
@article{li2018crowdpose,
title={CrowdPose: Efficient Crowded Scenes Pose Estimation and A New Benchmark},
author={Li, Jiefeng and Wang, Can and Zhu, Hao and Mao, Yihuan and Fang, Hao-Shu and Lu, Cewu},
journal={arXiv preprint arXiv:1812.00324},
year={2018}
}
```
</details>
For [CrowdPose](https://github.com/Jeff-sjtu/CrowdPose) data, please download from [CrowdPose](https://github.com/Jeff-sjtu/CrowdPose).
Please download the annotation files and human detection results from [crowdpose_annotations](https://download.openmmlab.com/mmpose/datasets/crowdpose_annotations.tar).
For top-down approaches, we follow [CrowdPose](https://arxiv.org/abs/1812.00324) to use the [pre-trained weights](https://pjreddie.com/media/files/yolov3.weights) of [YOLOv3](https://github.com/eriklindernoren/PyTorch-YOLOv3) to generate the detected human bounding boxes.
For model training, we follow [HigherHRNet](https://github.com/HRNet/HigherHRNet-Human-Pose-Estimation) to train models on CrowdPose train/val dataset, and evaluate models on CrowdPose test dataset.
Download and extract them under $MMPOSE/data, and make them look like this:
```text
mmpose
βββ mmpose
βββ docs
βββ tests
βββ tools
βββ configs
`ββ data
βββ crowdpose
β-- annotations
β β-- mmpose_crowdpose_train.json
β β-- mmpose_crowdpose_val.json
β β-- mmpose_crowdpose_trainval.json
β β-- mmpose_crowdpose_test.json
β β-- det_for_crowd_test_0.1_0.5.json
β-- images
β-- 100000.jpg
β-- 100001.jpg
β-- 100002.jpg
β-- ...
```
## OCHuman
<!-- [DATASET] -->
<details>
<summary align="right"><a href="http://openaccess.thecvf.com/content_CVPR_2019/html/Zhang_Pose2Seg_Detection_Free_Human_Instance_Segmentation_CVPR_2019_paper.html">OCHuman (CVPR'2019)</a></summary>
```bibtex
@inproceedings{zhang2019pose2seg,
title={Pose2seg: Detection free human instance segmentation},
author={Zhang, Song-Hai and Li, Ruilong and Dong, Xin and Rosin, Paul and Cai, Zixi and Han, Xi and Yang, Dingcheng and Huang, Haozhi and Hu, Shi-Min},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={889--898},
year={2019}
}
```
</details>
For [OCHuman](https://github.com/liruilong940607/OCHumanApi) data, please download the images and annotations from [OCHuman](https://github.com/liruilong940607/OCHumanApi),
Move them under $MMPOSE/data, and make them look like this:
```text
mmpose
βββ mmpose
βββ docs
βββ tests
βββ tools
βββ configs
`ββ data
βββ ochuman
β-- annotations
β β-- ochuman_coco_format_val_range_0.00_1.00.json
β |-- ochuman_coco_format_test_range_0.00_1.00.json
|-- images
β-- 000001.jpg
β-- 000002.jpg
β-- 000003.jpg
β-- ...
```
## MHP
<!-- [DATASET] -->
<details>
<summary align="right"><a href="https://dl.acm.org/doi/abs/10.1145/3240508.3240509">MHP (ACM MM'2018)</a></summary>
```bibtex
@inproceedings{zhao2018understanding,
title={Understanding humans in crowded scenes: Deep nested adversarial learning and a new benchmark for multi-human parsing},
author={Zhao, Jian and Li, Jianshu and Cheng, Yu and Sim, Terence and Yan, Shuicheng and Feng, Jiashi},
booktitle={Proceedings of the 26th ACM international conference on Multimedia},
pages={792--800},
year={2018}
}
```
</details>
For [MHP](https://lv-mhp.github.io/dataset) data, please download from [MHP](https://lv-mhp.github.io/dataset).
Please download the annotation files from [mhp_annotations](https://download.openmmlab.com/mmpose/datasets/mhp_annotations.tar.gz).
Please download and extract them under $MMPOSE/data, and make them look like this:
```text
mmpose
βββ mmpose
βββ docs
βββ tests
βββ tools
βββ configs
`ββ data
βββ mhp
β-- annotations
β β-- mhp_train.json
β β-- mhp_val.json
β
`-- train
β β-- images
β β β-- 1004.jpg
β β β-- 10050.jpg
β β β-- ...
β
`-- val
β β-- images
β β β-- 10059.jpg
β β β-- 10068.jpg
β β β-- ...
β
`-- test
β β-- images
β β β-- 1005.jpg
β β β-- 10052.jpg
β β β-- ...~~~~
```
## PoseTrack18
<!-- [DATASET] -->
<details>
<summary align="right"><a href="http://openaccess.thecvf.com/content_cvpr_2018/html/Andriluka_PoseTrack_A_Benchmark_CVPR_2018_paper.html">PoseTrack18 (CVPR'2018)</a></summary>
```bibtex
@inproceedings{andriluka2018posetrack,
title={Posetrack: A benchmark for human pose estimation and tracking},
author={Andriluka, Mykhaylo and Iqbal, Umar and Insafutdinov, Eldar and Pishchulin, Leonid and Milan, Anton and Gall, Juergen and Schiele, Bernt},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
pages={5167--5176},
year={2018}
}
```
</details>
For [PoseTrack18](https://posetrack.net/users/download.php) data, please download from [PoseTrack18](https://posetrack.net/users/download.php).
Please download the annotation files from [posetrack18_annotations](https://download.openmmlab.com/mmpose/datasets/posetrack18_annotations.tar).
We have merged the video-wise separated official annotation files into two json files (posetrack18_train & posetrack18_val.json). We also generate the [mask files](https://download.openmmlab.com/mmpose/datasets/posetrack18_mask.tar) to speed up training.
For top-down approaches, we use [MMDetection](https://github.com/open-mmlab/mmdetection) pre-trained [Cascade R-CNN](https://download.openmmlab.com/mmdetection/v2.0/cascade_rcnn/cascade_rcnn_x101_64x4d_fpn_20e_coco/cascade_rcnn_x101_64x4d_fpn_20e_coco_20200509_224357-051557b1.pth) (X-101-64x4d-FPN) to generate the detected human bounding boxes.
Please download and extract them under $MMPOSE/data, and make them look like this:
```text
mmpose
βββ mmpose
βββ docs
βββ tests
βββ tools
βββ configs
`ββ data
βββ posetrack18
β-- annotations
β β-- posetrack18_train.json
β β-- posetrack18_val.json
β β-- posetrack18_val_human_detections.json
β β-- train
β β β-- 000001_bonn_train.json
β β β-- 000002_bonn_train.json
β β β-- ...
β β-- val
β β β-- 000342_mpii_test.json
β β β-- 000522_mpii_test.json
β β β-- ...
β `-- test
β β-- 000001_mpiinew_test.json
β β-- 000002_mpiinew_test.json
β β-- ...
β
`-- images
β β-- train
β β β-- 000001_bonn_train
β β β β-- 000000.jpg
β β β β-- 000001.jpg
β β β β-- ...
β β β-- ...
β β-- val
β β β-- 000342_mpii_test
β β β β-- 000000.jpg
β β β β-- 000001.jpg
β β β β-- ...
β β β-- ...
β `-- test
β β-- 000001_mpiinew_test
β β β-- 000000.jpg
β β β-- 000001.jpg
β β β-- ...
β β-- ...
`-- mask
β-- train
β β-- 000002_bonn_train
β β β-- 000000.jpg
β β β-- 000001.jpg
β β β-- ...
β β-- ...
`-- val
β-- 000522_mpii_test
β β-- 000000.jpg
β β-- 000001.jpg
β β-- ...
β-- ...
```
The official evaluation tool for PoseTrack should be installed from GitHub.
```shell
pip install git+https://github.com/svenkreiss/poseval.git
```
## sub-JHMDB dataset
<!-- [DATASET] -->
<details>
<summary align="right"><a href="https://link.springer.com/chapter/10.1007/978-3-030-58580-8_27">RSN (ECCV'2020)</a></summary>
```bibtex
@misc{cai2020learning,
title={Learning Delicate Local Representations for Multi-Person Pose Estimation},
author={Yuanhao Cai and Zhicheng Wang and Zhengxiong Luo and Binyi Yin and Angang Du and Haoqian Wang and Xinyu Zhou and Erjin Zhou and Xiangyu Zhang and Jian Sun},
year={2020},
eprint={2003.04030},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
</details>
For [sub-JHMDB](http://jhmdb.is.tue.mpg.de/dataset) data, please download the [images](<(http://files.is.tue.mpg.de/jhmdb/Rename_Images.tar.gz)>) from [JHMDB](http://jhmdb.is.tue.mpg.de/dataset),
Please download the annotation files from [jhmdb_annotations](https://download.openmmlab.com/mmpose/datasets/jhmdb_annotations.tar).
Move them under $MMPOSE/data, and make them look like this:
```text
mmpose
βββ mmpose
βββ docs
βββ tests
βββ tools
βββ configs
`ββ data
βββ jhmdb
β-- annotations
β β-- Sub1_train.json
β |-- Sub1_test.json
β β-- Sub2_train.json
β |-- Sub2_test.json
β β-- Sub3_train.json
β |-- Sub3_test.json
|-- Rename_Images
β-- brush_hair
β β--April_09_brush_hair_u_nm_np1_ba_goo_0
| β β--00001.png
| β β--00002.png
β-- catch
β-- ...
```
|